Step |
Hyp |
Ref |
Expression |
1 |
|
ressnm.1 |
|- H = ( G |`s A ) |
2 |
|
ressnm.2 |
|- B = ( Base ` G ) |
3 |
|
ressnm.3 |
|- .0. = ( 0g ` G ) |
4 |
|
ressnm.4 |
|- N = ( norm ` G ) |
5 |
1 2
|
ressbas2 |
|- ( A C_ B -> A = ( Base ` H ) ) |
6 |
5
|
3ad2ant3 |
|- ( ( G e. Mnd /\ .0. e. A /\ A C_ B ) -> A = ( Base ` H ) ) |
7 |
2
|
fvexi |
|- B e. _V |
8 |
7
|
ssex |
|- ( A C_ B -> A e. _V ) |
9 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
10 |
1 9
|
ressds |
|- ( A e. _V -> ( dist ` G ) = ( dist ` H ) ) |
11 |
8 10
|
syl |
|- ( A C_ B -> ( dist ` G ) = ( dist ` H ) ) |
12 |
11
|
3ad2ant3 |
|- ( ( G e. Mnd /\ .0. e. A /\ A C_ B ) -> ( dist ` G ) = ( dist ` H ) ) |
13 |
|
eqidd |
|- ( ( G e. Mnd /\ .0. e. A /\ A C_ B ) -> x = x ) |
14 |
1 2 3
|
ress0g |
|- ( ( G e. Mnd /\ .0. e. A /\ A C_ B ) -> .0. = ( 0g ` H ) ) |
15 |
12 13 14
|
oveq123d |
|- ( ( G e. Mnd /\ .0. e. A /\ A C_ B ) -> ( x ( dist ` G ) .0. ) = ( x ( dist ` H ) ( 0g ` H ) ) ) |
16 |
6 15
|
mpteq12dv |
|- ( ( G e. Mnd /\ .0. e. A /\ A C_ B ) -> ( x e. A |-> ( x ( dist ` G ) .0. ) ) = ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) ) |
17 |
4 2 3 9
|
nmfval |
|- N = ( x e. B |-> ( x ( dist ` G ) .0. ) ) |
18 |
17
|
reseq1i |
|- ( N |` A ) = ( ( x e. B |-> ( x ( dist ` G ) .0. ) ) |` A ) |
19 |
|
resmpt |
|- ( A C_ B -> ( ( x e. B |-> ( x ( dist ` G ) .0. ) ) |` A ) = ( x e. A |-> ( x ( dist ` G ) .0. ) ) ) |
20 |
18 19
|
syl5eq |
|- ( A C_ B -> ( N |` A ) = ( x e. A |-> ( x ( dist ` G ) .0. ) ) ) |
21 |
20
|
3ad2ant3 |
|- ( ( G e. Mnd /\ .0. e. A /\ A C_ B ) -> ( N |` A ) = ( x e. A |-> ( x ( dist ` G ) .0. ) ) ) |
22 |
|
eqid |
|- ( norm ` H ) = ( norm ` H ) |
23 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
24 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
25 |
|
eqid |
|- ( dist ` H ) = ( dist ` H ) |
26 |
22 23 24 25
|
nmfval |
|- ( norm ` H ) = ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) |
27 |
26
|
a1i |
|- ( ( G e. Mnd /\ .0. e. A /\ A C_ B ) -> ( norm ` H ) = ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) ) |
28 |
16 21 27
|
3eqtr4d |
|- ( ( G e. Mnd /\ .0. e. A /\ A C_ B ) -> ( N |` A ) = ( norm ` H ) ) |