Step |
Hyp |
Ref |
Expression |
1 |
|
nmmulg.x |
|- B = ( Base ` R ) |
2 |
|
nmmulg.n |
|- N = ( norm ` R ) |
3 |
|
nmmulg.z |
|- Z = ( ZMod ` R ) |
4 |
|
zrhnm.1 |
|- L = ( ZRHom ` R ) |
5 |
|
simpl3 |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> R e. NzRing ) |
6 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
7 |
5 6
|
syl |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> R e. Ring ) |
8 |
|
simpr |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> M e. ZZ ) |
9 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
10 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
11 |
4 9 10
|
zrhmulg |
|- ( ( R e. Ring /\ M e. ZZ ) -> ( L ` M ) = ( M ( .g ` R ) ( 1r ` R ) ) ) |
12 |
11
|
fveq2d |
|- ( ( R e. Ring /\ M e. ZZ ) -> ( N ` ( L ` M ) ) = ( N ` ( M ( .g ` R ) ( 1r ` R ) ) ) ) |
13 |
7 8 12
|
syl2anc |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( L ` M ) ) = ( N ` ( M ( .g ` R ) ( 1r ` R ) ) ) ) |
14 |
|
simpl1 |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> Z e. NrmMod ) |
15 |
1 10
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
16 |
7 15
|
syl |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( 1r ` R ) e. B ) |
17 |
1 2 3 9
|
nmmulg |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ ( 1r ` R ) e. B ) -> ( N ` ( M ( .g ` R ) ( 1r ` R ) ) ) = ( ( abs ` M ) x. ( N ` ( 1r ` R ) ) ) ) |
18 |
14 8 16 17
|
syl3anc |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( M ( .g ` R ) ( 1r ` R ) ) ) = ( ( abs ` M ) x. ( N ` ( 1r ` R ) ) ) ) |
19 |
3 2
|
zlmnm |
|- ( R e. NzRing -> N = ( norm ` Z ) ) |
20 |
5 19
|
syl |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> N = ( norm ` Z ) ) |
21 |
20
|
fveq1d |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( 1r ` R ) ) = ( ( norm ` Z ) ` ( 1r ` R ) ) ) |
22 |
|
simpl2 |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> Z e. NrmRing ) |
23 |
|
nrgring |
|- ( Z e. NrmRing -> Z e. Ring ) |
24 |
22 23
|
syl |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> Z e. Ring ) |
25 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
26 |
10 25
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
27 |
5 26
|
syl |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
28 |
3 10
|
zlm1 |
|- ( 1r ` R ) = ( 1r ` Z ) |
29 |
3 25
|
zlm0 |
|- ( 0g ` R ) = ( 0g ` Z ) |
30 |
28 29
|
isnzr |
|- ( Z e. NzRing <-> ( Z e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
31 |
24 27 30
|
sylanbrc |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> Z e. NzRing ) |
32 |
|
eqid |
|- ( norm ` Z ) = ( norm ` Z ) |
33 |
32 28
|
nm1 |
|- ( ( Z e. NrmRing /\ Z e. NzRing ) -> ( ( norm ` Z ) ` ( 1r ` R ) ) = 1 ) |
34 |
22 31 33
|
syl2anc |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( ( norm ` Z ) ` ( 1r ` R ) ) = 1 ) |
35 |
21 34
|
eqtrd |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( 1r ` R ) ) = 1 ) |
36 |
35
|
oveq2d |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( ( abs ` M ) x. ( N ` ( 1r ` R ) ) ) = ( ( abs ` M ) x. 1 ) ) |
37 |
13 18 36
|
3eqtrd |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( L ` M ) ) = ( ( abs ` M ) x. 1 ) ) |
38 |
8
|
zcnd |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> M e. CC ) |
39 |
|
abscl |
|- ( M e. CC -> ( abs ` M ) e. RR ) |
40 |
39
|
recnd |
|- ( M e. CC -> ( abs ` M ) e. CC ) |
41 |
|
mulid1 |
|- ( ( abs ` M ) e. CC -> ( ( abs ` M ) x. 1 ) = ( abs ` M ) ) |
42 |
38 40 41
|
3syl |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( ( abs ` M ) x. 1 ) = ( abs ` M ) ) |
43 |
37 42
|
eqtrd |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( L ` M ) ) = ( abs ` M ) ) |