Metamath Proof Explorer


Theorem zrhnm

Description: The norm of the image by ZRHom of an integer in a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses nmmulg.x
|- B = ( Base ` R )
nmmulg.n
|- N = ( norm ` R )
nmmulg.z
|- Z = ( ZMod ` R )
zrhnm.1
|- L = ( ZRHom ` R )
Assertion zrhnm
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( L ` M ) ) = ( abs ` M ) )

Proof

Step Hyp Ref Expression
1 nmmulg.x
 |-  B = ( Base ` R )
2 nmmulg.n
 |-  N = ( norm ` R )
3 nmmulg.z
 |-  Z = ( ZMod ` R )
4 zrhnm.1
 |-  L = ( ZRHom ` R )
5 simpl3
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> R e. NzRing )
6 nzrring
 |-  ( R e. NzRing -> R e. Ring )
7 5 6 syl
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> R e. Ring )
8 simpr
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> M e. ZZ )
9 eqid
 |-  ( .g ` R ) = ( .g ` R )
10 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
11 4 9 10 zrhmulg
 |-  ( ( R e. Ring /\ M e. ZZ ) -> ( L ` M ) = ( M ( .g ` R ) ( 1r ` R ) ) )
12 11 fveq2d
 |-  ( ( R e. Ring /\ M e. ZZ ) -> ( N ` ( L ` M ) ) = ( N ` ( M ( .g ` R ) ( 1r ` R ) ) ) )
13 7 8 12 syl2anc
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( L ` M ) ) = ( N ` ( M ( .g ` R ) ( 1r ` R ) ) ) )
14 simpl1
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> Z e. NrmMod )
15 1 10 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. B )
16 7 15 syl
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( 1r ` R ) e. B )
17 1 2 3 9 nmmulg
 |-  ( ( Z e. NrmMod /\ M e. ZZ /\ ( 1r ` R ) e. B ) -> ( N ` ( M ( .g ` R ) ( 1r ` R ) ) ) = ( ( abs ` M ) x. ( N ` ( 1r ` R ) ) ) )
18 14 8 16 17 syl3anc
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( M ( .g ` R ) ( 1r ` R ) ) ) = ( ( abs ` M ) x. ( N ` ( 1r ` R ) ) ) )
19 3 2 zlmnm
 |-  ( R e. NzRing -> N = ( norm ` Z ) )
20 5 19 syl
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> N = ( norm ` Z ) )
21 20 fveq1d
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( 1r ` R ) ) = ( ( norm ` Z ) ` ( 1r ` R ) ) )
22 simpl2
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> Z e. NrmRing )
23 nrgring
 |-  ( Z e. NrmRing -> Z e. Ring )
24 22 23 syl
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> Z e. Ring )
25 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
26 10 25 nzrnz
 |-  ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) )
27 5 26 syl
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( 1r ` R ) =/= ( 0g ` R ) )
28 3 10 zlm1
 |-  ( 1r ` R ) = ( 1r ` Z )
29 3 25 zlm0
 |-  ( 0g ` R ) = ( 0g ` Z )
30 28 29 isnzr
 |-  ( Z e. NzRing <-> ( Z e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) )
31 24 27 30 sylanbrc
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> Z e. NzRing )
32 eqid
 |-  ( norm ` Z ) = ( norm ` Z )
33 32 28 nm1
 |-  ( ( Z e. NrmRing /\ Z e. NzRing ) -> ( ( norm ` Z ) ` ( 1r ` R ) ) = 1 )
34 22 31 33 syl2anc
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( ( norm ` Z ) ` ( 1r ` R ) ) = 1 )
35 21 34 eqtrd
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( 1r ` R ) ) = 1 )
36 35 oveq2d
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( ( abs ` M ) x. ( N ` ( 1r ` R ) ) ) = ( ( abs ` M ) x. 1 ) )
37 13 18 36 3eqtrd
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( L ` M ) ) = ( ( abs ` M ) x. 1 ) )
38 8 zcnd
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> M e. CC )
39 abscl
 |-  ( M e. CC -> ( abs ` M ) e. RR )
40 39 recnd
 |-  ( M e. CC -> ( abs ` M ) e. CC )
41 mulid1
 |-  ( ( abs ` M ) e. CC -> ( ( abs ` M ) x. 1 ) = ( abs ` M ) )
42 38 40 41 3syl
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( ( abs ` M ) x. 1 ) = ( abs ` M ) )
43 37 42 eqtrd
 |-  ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ M e. ZZ ) -> ( N ` ( L ` M ) ) = ( abs ` M ) )