| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmlem2.1 |
|- W = ( ZMod ` G ) |
| 2 |
|
zlm1.1 |
|- .1. = ( 1r ` G ) |
| 3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 4 |
3
|
a1i |
|- ( T. -> ( Base ` G ) = ( Base ` G ) ) |
| 5 |
1 3
|
zlmbas |
|- ( Base ` G ) = ( Base ` W ) |
| 6 |
5
|
a1i |
|- ( T. -> ( Base ` G ) = ( Base ` W ) ) |
| 7 |
|
eqid |
|- ( .r ` G ) = ( .r ` G ) |
| 8 |
1 7
|
zlmmulr |
|- ( .r ` G ) = ( .r ` W ) |
| 9 |
8
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( .r ` G ) = ( .r ` W ) ) |
| 10 |
9
|
oveqd |
|- ( ( T. /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( .r ` G ) y ) = ( x ( .r ` W ) y ) ) |
| 11 |
4 6 10
|
rngidpropd |
|- ( T. -> ( 1r ` G ) = ( 1r ` W ) ) |
| 12 |
11
|
mptru |
|- ( 1r ` G ) = ( 1r ` W ) |
| 13 |
2 12
|
eqtri |
|- .1. = ( 1r ` W ) |