| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmlem2.1 |  |-  W = ( ZMod ` G ) | 
						
							| 2 |  | zlm1.1 |  |-  .1. = ( 1r ` G ) | 
						
							| 3 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 4 | 3 | a1i |  |-  ( T. -> ( Base ` G ) = ( Base ` G ) ) | 
						
							| 5 | 1 3 | zlmbas |  |-  ( Base ` G ) = ( Base ` W ) | 
						
							| 6 | 5 | a1i |  |-  ( T. -> ( Base ` G ) = ( Base ` W ) ) | 
						
							| 7 |  | eqid |  |-  ( .r ` G ) = ( .r ` G ) | 
						
							| 8 | 1 7 | zlmmulr |  |-  ( .r ` G ) = ( .r ` W ) | 
						
							| 9 | 8 | a1i |  |-  ( ( T. /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( .r ` G ) = ( .r ` W ) ) | 
						
							| 10 | 9 | oveqd |  |-  ( ( T. /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( .r ` G ) y ) = ( x ( .r ` W ) y ) ) | 
						
							| 11 | 4 6 10 | rngidpropd |  |-  ( T. -> ( 1r ` G ) = ( 1r ` W ) ) | 
						
							| 12 | 11 | mptru |  |-  ( 1r ` G ) = ( 1r ` W ) | 
						
							| 13 | 2 12 | eqtri |  |-  .1. = ( 1r ` W ) |