| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmlem2.1 | ⊢ 𝑊  =  ( ℤMod ‘ 𝐺 ) | 
						
							| 2 |  | zlm1.1 | ⊢  1   =  ( 1r ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 4 | 3 | a1i | ⊢ ( ⊤  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 5 | 1 3 | zlmbas | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝑊 ) | 
						
							| 6 | 5 | a1i | ⊢ ( ⊤  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 7 |  | eqid | ⊢ ( .r ‘ 𝐺 )  =  ( .r ‘ 𝐺 ) | 
						
							| 8 | 1 7 | zlmmulr | ⊢ ( .r ‘ 𝐺 )  =  ( .r ‘ 𝑊 ) | 
						
							| 9 | 8 | a1i | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( .r ‘ 𝐺 )  =  ( .r ‘ 𝑊 ) ) | 
						
							| 10 | 9 | oveqd | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 11 | 4 6 10 | rngidpropd | ⊢ ( ⊤  →  ( 1r ‘ 𝐺 )  =  ( 1r ‘ 𝑊 ) ) | 
						
							| 12 | 11 | mptru | ⊢ ( 1r ‘ 𝐺 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 13 | 2 12 | eqtri | ⊢  1   =  ( 1r ‘ 𝑊 ) |