Metamath Proof Explorer


Theorem zlm1

Description: Unit of a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zlmlem2.1 W = ℤMod G
zlm1.1 1 ˙ = 1 G
Assertion zlm1 1 ˙ = 1 W

Proof

Step Hyp Ref Expression
1 zlmlem2.1 W = ℤMod G
2 zlm1.1 1 ˙ = 1 G
3 eqid Base G = Base G
4 3 a1i Base G = Base G
5 1 3 zlmbas Base G = Base W
6 5 a1i Base G = Base W
7 eqid G = G
8 1 7 zlmmulr G = W
9 8 a1i x Base G y Base G G = W
10 9 oveqd x Base G y Base G x G y = x W y
11 4 6 10 rngidpropd 1 G = 1 W
12 11 mptru 1 G = 1 W
13 2 12 eqtri 1 ˙ = 1 W