Metamath Proof Explorer


Theorem zlm1

Description: Unity element of a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zlmlem2.1 W=ℤModG
zlm1.1 1˙=1G
Assertion zlm1 1˙=1W

Proof

Step Hyp Ref Expression
1 zlmlem2.1 W=ℤModG
2 zlm1.1 1˙=1G
3 eqid BaseG=BaseG
4 3 a1i BaseG=BaseG
5 1 3 zlmbas BaseG=BaseW
6 5 a1i BaseG=BaseW
7 eqid G=G
8 1 7 zlmmulr G=W
9 8 a1i xBaseGyBaseGG=W
10 9 oveqd xBaseGyBaseGxGy=xWy
11 4 6 10 rngidpropd 1G=1W
12 11 mptru 1G=1W
13 2 12 eqtri 1˙=1W