Metamath Proof Explorer


Theorem nm1

Description: The norm of one in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nm1.n
|- N = ( norm ` R )
nm1.u
|- .1. = ( 1r ` R )
Assertion nm1
|- ( ( R e. NrmRing /\ R e. NzRing ) -> ( N ` .1. ) = 1 )

Proof

Step Hyp Ref Expression
1 nm1.n
 |-  N = ( norm ` R )
2 nm1.u
 |-  .1. = ( 1r ` R )
3 eqid
 |-  ( AbsVal ` R ) = ( AbsVal ` R )
4 1 3 nrgabv
 |-  ( R e. NrmRing -> N e. ( AbsVal ` R ) )
5 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
6 2 5 nzrnz
 |-  ( R e. NzRing -> .1. =/= ( 0g ` R ) )
7 3 2 5 abv1z
 |-  ( ( N e. ( AbsVal ` R ) /\ .1. =/= ( 0g ` R ) ) -> ( N ` .1. ) = 1 )
8 4 6 7 syl2an
 |-  ( ( R e. NrmRing /\ R e. NzRing ) -> ( N ` .1. ) = 1 )