| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nminvr.n |
|- N = ( norm ` R ) |
| 2 |
|
nminvr.u |
|- U = ( Unit ` R ) |
| 3 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> R e. NrmGrp ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
5 2
|
unitcl |
|- ( A e. U -> A e. ( Base ` R ) ) |
| 7 |
6
|
3ad2ant3 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> A e. ( Base ` R ) ) |
| 8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 9 |
2 8
|
nzrunit |
|- ( ( R e. NzRing /\ A e. U ) -> A =/= ( 0g ` R ) ) |
| 10 |
9
|
3adant1 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> A =/= ( 0g ` R ) ) |
| 11 |
5 1 8
|
nmne0 |
|- ( ( R e. NrmGrp /\ A e. ( Base ` R ) /\ A =/= ( 0g ` R ) ) -> ( N ` A ) =/= 0 ) |
| 12 |
4 7 10 11
|
syl3anc |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` A ) =/= 0 ) |