Metamath Proof Explorer


Theorem unitnmn0

Description: The norm of a unit is nonzero in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nminvr.n N=normR
nminvr.u U=UnitR
Assertion unitnmn0 RNrmRingRNzRingAUNA0

Proof

Step Hyp Ref Expression
1 nminvr.n N=normR
2 nminvr.u U=UnitR
3 nrgngp RNrmRingRNrmGrp
4 3 3ad2ant1 RNrmRingRNzRingAURNrmGrp
5 eqid BaseR=BaseR
6 5 2 unitcl AUABaseR
7 6 3ad2ant3 RNrmRingRNzRingAUABaseR
8 eqid 0R=0R
9 2 8 nzrunit RNzRingAUA0R
10 9 3adant1 RNrmRingRNzRingAUA0R
11 5 1 8 nmne0 RNrmGrpABaseRA0RNA0
12 4 7 10 11 syl3anc RNrmRingRNzRingAUNA0