Metamath Proof Explorer


Theorem nminvr

Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nminvr.n N=normR
nminvr.u U=UnitR
nminvr.i I=invrR
Assertion nminvr RNrmRingRNzRingAUNIA=1NA

Proof

Step Hyp Ref Expression
1 nminvr.n N=normR
2 nminvr.u U=UnitR
3 nminvr.i I=invrR
4 nrgngp RNrmRingRNrmGrp
5 4 3ad2ant1 RNrmRingRNzRingAURNrmGrp
6 eqid BaseR=BaseR
7 6 2 unitcl AUABaseR
8 7 3ad2ant3 RNrmRingRNzRingAUABaseR
9 6 1 nmcl RNrmGrpABaseRNA
10 5 8 9 syl2anc RNrmRingRNzRingAUNA
11 10 recnd RNrmRingRNzRingAUNA
12 nzrring RNzRingRRing
13 12 3ad2ant2 RNrmRingRNzRingAURRing
14 simp3 RNrmRingRNzRingAUAU
15 2 3 6 ringinvcl RRingAUIABaseR
16 13 14 15 syl2anc RNrmRingRNzRingAUIABaseR
17 6 1 nmcl RNrmGrpIABaseRNIA
18 5 16 17 syl2anc RNrmRingRNzRingAUNIA
19 18 recnd RNrmRingRNzRingAUNIA
20 1 2 unitnmn0 RNrmRingRNzRingAUNA0
21 eqid R=R
22 eqid 1R=1R
23 2 3 21 22 unitrinv RRingAUARIA=1R
24 13 14 23 syl2anc RNrmRingRNzRingAUARIA=1R
25 24 fveq2d RNrmRingRNzRingAUNARIA=N1R
26 simp1 RNrmRingRNzRingAURNrmRing
27 6 1 21 nmmul RNrmRingABaseRIABaseRNARIA=NANIA
28 26 8 16 27 syl3anc RNrmRingRNzRingAUNARIA=NANIA
29 1 22 nm1 RNrmRingRNzRingN1R=1
30 29 3adant3 RNrmRingRNzRingAUN1R=1
31 25 28 30 3eqtr3d RNrmRingRNzRingAUNANIA=1
32 11 19 20 31 mvllmuld RNrmRingRNzRingAUNIA=1NA