Metamath Proof Explorer


Theorem nmdvr

Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nmdvr.x X=BaseR
nmdvr.n N=normR
nmdvr.u U=UnitR
nmdvr.d ×˙=/rR
Assertion nmdvr RNrmRingRNzRingAXBUNA×˙B=NANB

Proof

Step Hyp Ref Expression
1 nmdvr.x X=BaseR
2 nmdvr.n N=normR
3 nmdvr.u U=UnitR
4 nmdvr.d ×˙=/rR
5 simpll RNrmRingRNzRingAXBURNrmRing
6 simprl RNrmRingRNzRingAXBUAX
7 nrgring RNrmRingRRing
8 7 ad2antrr RNrmRingRNzRingAXBURRing
9 simprr RNrmRingRNzRingAXBUBU
10 eqid invrR=invrR
11 3 10 1 ringinvcl RRingBUinvrRBX
12 8 9 11 syl2anc RNrmRingRNzRingAXBUinvrRBX
13 eqid R=R
14 1 2 13 nmmul RNrmRingAXinvrRBXNARinvrRB=NANinvrRB
15 5 6 12 14 syl3anc RNrmRingRNzRingAXBUNARinvrRB=NANinvrRB
16 simplr RNrmRingRNzRingAXBURNzRing
17 2 3 10 nminvr RNrmRingRNzRingBUNinvrRB=1NB
18 5 16 9 17 syl3anc RNrmRingRNzRingAXBUNinvrRB=1NB
19 18 oveq2d RNrmRingRNzRingAXBUNANinvrRB=NA1NB
20 15 19 eqtrd RNrmRingRNzRingAXBUNARinvrRB=NA1NB
21 1 13 3 10 4 dvrval AXBUA×˙B=ARinvrRB
22 21 adantl RNrmRingRNzRingAXBUA×˙B=ARinvrRB
23 22 fveq2d RNrmRingRNzRingAXBUNA×˙B=NARinvrRB
24 nrgngp RNrmRingRNrmGrp
25 24 ad2antrr RNrmRingRNzRingAXBURNrmGrp
26 1 2 nmcl RNrmGrpAXNA
27 25 6 26 syl2anc RNrmRingRNzRingAXBUNA
28 27 recnd RNrmRingRNzRingAXBUNA
29 1 3 unitss UX
30 29 9 sselid RNrmRingRNzRingAXBUBX
31 1 2 nmcl RNrmGrpBXNB
32 25 30 31 syl2anc RNrmRingRNzRingAXBUNB
33 32 recnd RNrmRingRNzRingAXBUNB
34 2 3 unitnmn0 RNrmRingRNzRingBUNB0
35 34 3expa RNrmRingRNzRingBUNB0
36 35 adantrl RNrmRingRNzRingAXBUNB0
37 28 33 36 divrecd RNrmRingRNzRingAXBUNANB=NA1NB
38 20 23 37 3eqtr4d RNrmRingRNzRingAXBUNA×˙B=NANB