| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmdvr.x |
|
| 2 |
|
nmdvr.n |
|
| 3 |
|
nmdvr.u |
|
| 4 |
|
nmdvr.d |
|
| 5 |
|
simpll |
|
| 6 |
|
simprl |
|
| 7 |
|
nrgring |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
|
simprr |
|
| 10 |
|
eqid |
|
| 11 |
3 10 1
|
ringinvcl |
|
| 12 |
8 9 11
|
syl2anc |
|
| 13 |
|
eqid |
|
| 14 |
1 2 13
|
nmmul |
|
| 15 |
5 6 12 14
|
syl3anc |
|
| 16 |
|
simplr |
|
| 17 |
2 3 10
|
nminvr |
|
| 18 |
5 16 9 17
|
syl3anc |
|
| 19 |
18
|
oveq2d |
|
| 20 |
15 19
|
eqtrd |
|
| 21 |
1 13 3 10 4
|
dvrval |
|
| 22 |
21
|
adantl |
|
| 23 |
22
|
fveq2d |
|
| 24 |
|
nrgngp |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
1 2
|
nmcl |
|
| 27 |
25 6 26
|
syl2anc |
|
| 28 |
27
|
recnd |
|
| 29 |
1 3
|
unitss |
|
| 30 |
29 9
|
sselid |
|
| 31 |
1 2
|
nmcl |
|
| 32 |
25 30 31
|
syl2anc |
|
| 33 |
32
|
recnd |
|
| 34 |
2 3
|
unitnmn0 |
|
| 35 |
34
|
3expa |
|
| 36 |
35
|
adantrl |
|
| 37 |
28 33 36
|
divrecd |
|
| 38 |
20 23 37
|
3eqtr4d |
|