Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmdvr.x | |
|
nmdvr.n | |
||
nmdvr.u | |
||
nmdvr.d | |
||
Assertion | nmdvr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmdvr.x | |
|
2 | nmdvr.n | |
|
3 | nmdvr.u | |
|
4 | nmdvr.d | |
|
5 | simpll | |
|
6 | simprl | |
|
7 | nrgring | |
|
8 | 7 | ad2antrr | |
9 | simprr | |
|
10 | eqid | |
|
11 | 3 10 1 | ringinvcl | |
12 | 8 9 11 | syl2anc | |
13 | eqid | |
|
14 | 1 2 13 | nmmul | |
15 | 5 6 12 14 | syl3anc | |
16 | simplr | |
|
17 | 2 3 10 | nminvr | |
18 | 5 16 9 17 | syl3anc | |
19 | 18 | oveq2d | |
20 | 15 19 | eqtrd | |
21 | 1 13 3 10 4 | dvrval | |
22 | 21 | adantl | |
23 | 22 | fveq2d | |
24 | nrgngp | |
|
25 | 24 | ad2antrr | |
26 | 1 2 | nmcl | |
27 | 25 6 26 | syl2anc | |
28 | 27 | recnd | |
29 | 1 3 | unitss | |
30 | 29 9 | sselid | |
31 | 1 2 | nmcl | |
32 | 25 30 31 | syl2anc | |
33 | 32 | recnd | |
34 | 2 3 | unitnmn0 | |
35 | 34 | 3expa | |
36 | 35 | adantrl | |
37 | 28 33 36 | divrecd | |
38 | 20 23 37 | 3eqtr4d | |