Description: The norm of one in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nm1.n | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | |
| nm1.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | nm1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) → ( 𝑁 ‘ 1 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nm1.n | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | |
| 2 | nm1.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 ) | |
| 4 | 1 3 | nrgabv | ⊢ ( 𝑅 ∈ NrmRing → 𝑁 ∈ ( AbsVal ‘ 𝑅 ) ) |
| 5 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 6 | 2 5 | nzrnz | ⊢ ( 𝑅 ∈ NzRing → 1 ≠ ( 0g ‘ 𝑅 ) ) |
| 7 | 3 2 5 | abv1z | ⊢ ( ( 𝑁 ∈ ( AbsVal ‘ 𝑅 ) ∧ 1 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑁 ‘ 1 ) = 1 ) |
| 8 | 4 6 7 | syl2an | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) → ( 𝑁 ‘ 1 ) = 1 ) |