Metamath Proof Explorer


Theorem nm1

Description: The norm of one in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nm1.n 𝑁 = ( norm ‘ 𝑅 )
nm1.u 1 = ( 1r𝑅 )
Assertion nm1 ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) → ( 𝑁1 ) = 1 )

Proof

Step Hyp Ref Expression
1 nm1.n 𝑁 = ( norm ‘ 𝑅 )
2 nm1.u 1 = ( 1r𝑅 )
3 eqid ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 )
4 1 3 nrgabv ( 𝑅 ∈ NrmRing → 𝑁 ∈ ( AbsVal ‘ 𝑅 ) )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 2 5 nzrnz ( 𝑅 ∈ NzRing → 1 ≠ ( 0g𝑅 ) )
7 3 2 5 abv1z ( ( 𝑁 ∈ ( AbsVal ‘ 𝑅 ) ∧ 1 ≠ ( 0g𝑅 ) ) → ( 𝑁1 ) = 1 )
8 4 6 7 syl2an ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) → ( 𝑁1 ) = 1 )