| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
| 2 |
|
abv1.p |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
abv1z.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
1
|
abvrcl |
⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
5 2
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 8 |
1 5
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 9 |
7 8
|
mpdan |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 11 |
10
|
recnd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
| 12 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 𝐹 ∈ 𝐴 ) |
| 13 |
7
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ≠ 0 ) |
| 15 |
1 5 3
|
abvne0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ∈ ( Base ‘ 𝑅 ) ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) ≠ 0 ) |
| 16 |
12 13 14 15
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) ≠ 0 ) |
| 17 |
11 11 16
|
divcan3d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) / ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 1 ) ) |
| 18 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 19 |
5 18 2
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) 1 ) = 1 ) |
| 20 |
4 13 19
|
syl2an2r |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 1 ( .r ‘ 𝑅 ) 1 ) = 1 ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ ( 1 ( .r ‘ 𝑅 ) 1 ) ) = ( 𝐹 ‘ 1 ) ) |
| 22 |
1 5 18
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 1 ( .r ‘ 𝑅 ) 1 ) ) = ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) ) |
| 23 |
12 13 13 22
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ ( 1 ( .r ‘ 𝑅 ) 1 ) ) = ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) ) |
| 24 |
21 23
|
eqtr3d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) ) |
| 25 |
24
|
oveq1d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( ( 𝐹 ‘ 1 ) / ( 𝐹 ‘ 1 ) ) = ( ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) / ( 𝐹 ‘ 1 ) ) ) |
| 26 |
11 16
|
dividd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( ( 𝐹 ‘ 1 ) / ( 𝐹 ‘ 1 ) ) = 1 ) |
| 27 |
25 26
|
eqtr3d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) / ( 𝐹 ‘ 1 ) ) = 1 ) |
| 28 |
17 27
|
eqtr3d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = 1 ) |