| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abv0.a |  | 
						
							| 2 |  | abv1.p |  | 
						
							| 3 |  | abv1z.z |  | 
						
							| 4 | 1 | abvrcl |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 5 2 | ringidcl |  | 
						
							| 7 | 4 6 | syl |  | 
						
							| 8 | 1 5 | abvcl |  | 
						
							| 9 | 7 8 | mpdan |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 10 | recnd |  | 
						
							| 12 |  | simpl |  | 
						
							| 13 | 7 | adantr |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 1 5 3 | abvne0 |  | 
						
							| 16 | 12 13 14 15 | syl3anc |  | 
						
							| 17 | 11 11 16 | divcan3d |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 5 18 2 | ringlidm |  | 
						
							| 20 | 4 13 19 | syl2an2r |  | 
						
							| 21 | 20 | fveq2d |  | 
						
							| 22 | 1 5 18 | abvmul |  | 
						
							| 23 | 12 13 13 22 | syl3anc |  | 
						
							| 24 | 21 23 | eqtr3d |  | 
						
							| 25 | 24 | oveq1d |  | 
						
							| 26 | 11 16 | dividd |  | 
						
							| 27 | 25 26 | eqtr3d |  | 
						
							| 28 | 17 27 | eqtr3d |  |