Metamath Proof Explorer


Theorem abvrcl

Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypothesis abvf.a A=AbsValR
Assertion abvrcl FARRing

Proof

Step Hyp Ref Expression
1 abvf.a A=AbsValR
2 df-abv AbsVal=rRingf0+∞Baser|xBaserfx=0x=0ryBaserfxry=fxfyfx+ryfx+fy
3 2 mptrcl FAbsValRRRing
4 3 1 eleq2s FARRing