| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmmulg.x |
|
| 2 |
|
nmmulg.n |
|
| 3 |
|
nmmulg.z |
|
| 4 |
|
zrhnm.1 |
|
| 5 |
|
simpl3 |
|
| 6 |
|
nzrring |
|
| 7 |
5 6
|
syl |
|
| 8 |
|
simpr |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
4 9 10
|
zrhmulg |
|
| 12 |
11
|
fveq2d |
|
| 13 |
7 8 12
|
syl2anc |
|
| 14 |
|
simpl1 |
|
| 15 |
1 10
|
ringidcl |
|
| 16 |
7 15
|
syl |
|
| 17 |
1 2 3 9
|
nmmulg |
|
| 18 |
14 8 16 17
|
syl3anc |
|
| 19 |
3 2
|
zlmnm |
|
| 20 |
5 19
|
syl |
|
| 21 |
20
|
fveq1d |
|
| 22 |
|
simpl2 |
|
| 23 |
|
nrgring |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
eqid |
|
| 26 |
10 25
|
nzrnz |
|
| 27 |
5 26
|
syl |
|
| 28 |
3 10
|
zlm1 |
|
| 29 |
3 25
|
zlm0 |
|
| 30 |
28 29
|
isnzr |
|
| 31 |
24 27 30
|
sylanbrc |
|
| 32 |
|
eqid |
|
| 33 |
32 28
|
nm1 |
|
| 34 |
22 31 33
|
syl2anc |
|
| 35 |
21 34
|
eqtrd |
|
| 36 |
35
|
oveq2d |
|
| 37 |
13 18 36
|
3eqtrd |
|
| 38 |
8
|
zcnd |
|
| 39 |
|
abscl |
|
| 40 |
39
|
recnd |
|
| 41 |
|
mulrid |
|
| 42 |
38 40 41
|
3syl |
|
| 43 |
37 42
|
eqtrd |
|