Step |
Hyp |
Ref |
Expression |
1 |
|
nmmulg.x |
|
2 |
|
nmmulg.n |
|
3 |
|
nmmulg.z |
|
4 |
|
zrhnm.1 |
|
5 |
|
simpl3 |
|
6 |
|
nzrring |
|
7 |
5 6
|
syl |
|
8 |
|
simpr |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
4 9 10
|
zrhmulg |
|
12 |
11
|
fveq2d |
|
13 |
7 8 12
|
syl2anc |
|
14 |
|
simpl1 |
|
15 |
1 10
|
ringidcl |
|
16 |
7 15
|
syl |
|
17 |
1 2 3 9
|
nmmulg |
|
18 |
14 8 16 17
|
syl3anc |
|
19 |
3 2
|
zlmnm |
|
20 |
5 19
|
syl |
|
21 |
20
|
fveq1d |
|
22 |
|
simpl2 |
|
23 |
|
nrgring |
|
24 |
22 23
|
syl |
|
25 |
|
eqid |
|
26 |
10 25
|
nzrnz |
|
27 |
5 26
|
syl |
|
28 |
3 10
|
zlm1 |
|
29 |
3 25
|
zlm0 |
|
30 |
28 29
|
isnzr |
|
31 |
24 27 30
|
sylanbrc |
|
32 |
|
eqid |
|
33 |
32 28
|
nm1 |
|
34 |
22 31 33
|
syl2anc |
|
35 |
21 34
|
eqtrd |
|
36 |
35
|
oveq2d |
|
37 |
13 18 36
|
3eqtrd |
|
38 |
8
|
zcnd |
|
39 |
|
abscl |
|
40 |
39
|
recnd |
|
41 |
|
mulid1 |
|
42 |
38 40 41
|
3syl |
|
43 |
37 42
|
eqtrd |
|