Metamath Proof Explorer


Theorem cnzh

Description: The ZZ -module of CC is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018)

Ref Expression
Assertion cnzh ℤMod fld NrmMod

Proof

Step Hyp Ref Expression
1 cnnrg fld NrmRing
2 eqid ℤMod fld = ℤMod fld
3 2 zhmnrg fld NrmRing ℤMod fld NrmRing
4 nrgngp ℤMod fld NrmRing ℤMod fld NrmGrp
5 1 3 4 mp2b ℤMod fld NrmGrp
6 nrgring fld NrmRing fld Ring
7 ringabl fld Ring fld Abel
8 1 6 7 mp2b fld Abel
9 2 zlmlmod fld Abel ℤMod fld LMod
10 8 9 mpbi ℤMod fld LMod
11 zringnrg ring NrmRing
12 5 10 11 3pm3.2i ℤMod fld NrmGrp ℤMod fld LMod ring NrmRing
13 simpl z x z
14 13 zcnd z x z
15 simpr z x x
16 14 15 absmuld z x z x = z x
17 cnfldmulg z x z fld x = z x
18 17 fveq2d z x z fld x = z x
19 fvres z abs z = z
20 19 adantr z x abs z = z
21 20 oveq1d z x abs z x = z x
22 16 18 21 3eqtr4d z x z fld x = abs z x
23 22 rgen2 z x z fld x = abs z x
24 cnfldbas = Base fld
25 2 24 zlmbas = Base ℤMod fld
26 cnfldex fld V
27 cnfldnm abs = norm fld
28 2 27 zlmnm fld V abs = norm ℤMod fld
29 26 28 ax-mp abs = norm ℤMod fld
30 eqid fld = fld
31 2 30 zlmvsca fld = ℤMod fld
32 2 zlmsca fld V ring = Scalar ℤMod fld
33 26 32 ax-mp ring = Scalar ℤMod fld
34 zringbas = Base ring
35 zringnm norm ring = abs
36 35 eqcomi abs = norm ring
37 25 29 31 33 34 36 isnlm ℤMod fld NrmMod ℤMod fld NrmGrp ℤMod fld LMod ring NrmRing z x z fld x = abs z x
38 12 23 37 mpbir2an ℤMod fld NrmMod