| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnnrg | ⊢ ℂfld  ∈  NrmRing | 
						
							| 2 |  | eqid | ⊢ ( ℤMod ‘ ℂfld )  =  ( ℤMod ‘ ℂfld ) | 
						
							| 3 | 2 | zhmnrg | ⊢ ( ℂfld  ∈  NrmRing  →  ( ℤMod ‘ ℂfld )  ∈  NrmRing ) | 
						
							| 4 |  | nrgngp | ⊢ ( ( ℤMod ‘ ℂfld )  ∈  NrmRing  →  ( ℤMod ‘ ℂfld )  ∈  NrmGrp ) | 
						
							| 5 | 1 3 4 | mp2b | ⊢ ( ℤMod ‘ ℂfld )  ∈  NrmGrp | 
						
							| 6 |  | nrgring | ⊢ ( ℂfld  ∈  NrmRing  →  ℂfld  ∈  Ring ) | 
						
							| 7 |  | ringabl | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  Abel ) | 
						
							| 8 | 1 6 7 | mp2b | ⊢ ℂfld  ∈  Abel | 
						
							| 9 | 2 | zlmlmod | ⊢ ( ℂfld  ∈  Abel  ↔  ( ℤMod ‘ ℂfld )  ∈  LMod ) | 
						
							| 10 | 8 9 | mpbi | ⊢ ( ℤMod ‘ ℂfld )  ∈  LMod | 
						
							| 11 |  | zringnrg | ⊢ ℤring  ∈  NrmRing | 
						
							| 12 | 5 10 11 | 3pm3.2i | ⊢ ( ( ℤMod ‘ ℂfld )  ∈  NrmGrp  ∧  ( ℤMod ‘ ℂfld )  ∈  LMod  ∧  ℤring  ∈  NrmRing ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  𝑧  ∈  ℤ ) | 
						
							| 14 | 13 | zcnd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  𝑧  ∈  ℂ ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  𝑥  ∈  ℂ ) | 
						
							| 16 | 14 15 | absmuld | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  ( abs ‘ ( 𝑧  ·  𝑥 ) )  =  ( ( abs ‘ 𝑧 )  ·  ( abs ‘ 𝑥 ) ) ) | 
						
							| 17 |  | cnfldmulg | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  ( 𝑧 ( .g ‘ ℂfld ) 𝑥 )  =  ( 𝑧  ·  𝑥 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  ( abs ‘ ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) )  =  ( abs ‘ ( 𝑧  ·  𝑥 ) ) ) | 
						
							| 19 |  | fvres | ⊢ ( 𝑧  ∈  ℤ  →  ( ( abs  ↾  ℤ ) ‘ 𝑧 )  =  ( abs ‘ 𝑧 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  ( ( abs  ↾  ℤ ) ‘ 𝑧 )  =  ( abs ‘ 𝑧 ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  ( ( ( abs  ↾  ℤ ) ‘ 𝑧 )  ·  ( abs ‘ 𝑥 ) )  =  ( ( abs ‘ 𝑧 )  ·  ( abs ‘ 𝑥 ) ) ) | 
						
							| 22 | 16 18 21 | 3eqtr4d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  ( abs ‘ ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) )  =  ( ( ( abs  ↾  ℤ ) ‘ 𝑧 )  ·  ( abs ‘ 𝑥 ) ) ) | 
						
							| 23 | 22 | rgen2 | ⊢ ∀ 𝑧  ∈  ℤ ∀ 𝑥  ∈  ℂ ( abs ‘ ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) )  =  ( ( ( abs  ↾  ℤ ) ‘ 𝑧 )  ·  ( abs ‘ 𝑥 ) ) | 
						
							| 24 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 25 | 2 24 | zlmbas | ⊢ ℂ  =  ( Base ‘ ( ℤMod ‘ ℂfld ) ) | 
						
							| 26 |  | cnfldex | ⊢ ℂfld  ∈  V | 
						
							| 27 |  | cnfldnm | ⊢ abs  =  ( norm ‘ ℂfld ) | 
						
							| 28 | 2 27 | zlmnm | ⊢ ( ℂfld  ∈  V  →  abs  =  ( norm ‘ ( ℤMod ‘ ℂfld ) ) ) | 
						
							| 29 | 26 28 | ax-mp | ⊢ abs  =  ( norm ‘ ( ℤMod ‘ ℂfld ) ) | 
						
							| 30 |  | eqid | ⊢ ( .g ‘ ℂfld )  =  ( .g ‘ ℂfld ) | 
						
							| 31 | 2 30 | zlmvsca | ⊢ ( .g ‘ ℂfld )  =  (  ·𝑠  ‘ ( ℤMod ‘ ℂfld ) ) | 
						
							| 32 | 2 | zlmsca | ⊢ ( ℂfld  ∈  V  →  ℤring  =  ( Scalar ‘ ( ℤMod ‘ ℂfld ) ) ) | 
						
							| 33 | 26 32 | ax-mp | ⊢ ℤring  =  ( Scalar ‘ ( ℤMod ‘ ℂfld ) ) | 
						
							| 34 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 35 |  | zringnm | ⊢ ( norm ‘ ℤring )  =  ( abs  ↾  ℤ ) | 
						
							| 36 | 35 | eqcomi | ⊢ ( abs  ↾  ℤ )  =  ( norm ‘ ℤring ) | 
						
							| 37 | 25 29 31 33 34 36 | isnlm | ⊢ ( ( ℤMod ‘ ℂfld )  ∈  NrmMod  ↔  ( ( ( ℤMod ‘ ℂfld )  ∈  NrmGrp  ∧  ( ℤMod ‘ ℂfld )  ∈  LMod  ∧  ℤring  ∈  NrmRing )  ∧  ∀ 𝑧  ∈  ℤ ∀ 𝑥  ∈  ℂ ( abs ‘ ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) )  =  ( ( ( abs  ↾  ℤ ) ‘ 𝑧 )  ·  ( abs ‘ 𝑥 ) ) ) ) | 
						
							| 38 | 12 23 37 | mpbir2an | ⊢ ( ℤMod ‘ ℂfld )  ∈  NrmMod |