Metamath Proof Explorer


Theorem cnzh

Description: The ZZ -module of CC is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018)

Ref Expression
Assertion cnzh ( ℤMod ‘ ℂfld ) ∈ NrmMod

Proof

Step Hyp Ref Expression
1 cnnrg fld ∈ NrmRing
2 eqid ( ℤMod ‘ ℂfld ) = ( ℤMod ‘ ℂfld )
3 2 zhmnrg ( ℂfld ∈ NrmRing → ( ℤMod ‘ ℂfld ) ∈ NrmRing )
4 nrgngp ( ( ℤMod ‘ ℂfld ) ∈ NrmRing → ( ℤMod ‘ ℂfld ) ∈ NrmGrp )
5 1 3 4 mp2b ( ℤMod ‘ ℂfld ) ∈ NrmGrp
6 nrgring ( ℂfld ∈ NrmRing → ℂfld ∈ Ring )
7 ringabl ( ℂfld ∈ Ring → ℂfld ∈ Abel )
8 1 6 7 mp2b fld ∈ Abel
9 2 zlmlmod ( ℂfld ∈ Abel ↔ ( ℤMod ‘ ℂfld ) ∈ LMod )
10 8 9 mpbi ( ℤMod ‘ ℂfld ) ∈ LMod
11 zringnrg ring ∈ NrmRing
12 5 10 11 3pm3.2i ( ( ℤMod ‘ ℂfld ) ∈ NrmGrp ∧ ( ℤMod ‘ ℂfld ) ∈ LMod ∧ ℤring ∈ NrmRing )
13 simpl ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → 𝑧 ∈ ℤ )
14 13 zcnd ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → 𝑧 ∈ ℂ )
15 simpr ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ )
16 14 15 absmuld ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 𝑧 · 𝑥 ) ) = ( ( abs ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) )
17 cnfldmulg ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 · 𝑥 ) )
18 17 fveq2d ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) )
19 fvres ( 𝑧 ∈ ℤ → ( ( abs ↾ ℤ ) ‘ 𝑧 ) = ( abs ‘ 𝑧 ) )
20 19 adantr ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → ( ( abs ↾ ℤ ) ‘ 𝑧 ) = ( abs ‘ 𝑧 ) )
21 20 oveq1d ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) = ( ( abs ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) )
22 16 18 21 3eqtr4d ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) )
23 22 rgen2 𝑧 ∈ ℤ ∀ 𝑥 ∈ ℂ ( abs ‘ ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( abs ‘ 𝑥 ) )
24 cnfldbas ℂ = ( Base ‘ ℂfld )
25 2 24 zlmbas ℂ = ( Base ‘ ( ℤMod ‘ ℂfld ) )
26 cnfldex fld ∈ V
27 cnfldnm abs = ( norm ‘ ℂfld )
28 2 27 zlmnm ( ℂfld ∈ V → abs = ( norm ‘ ( ℤMod ‘ ℂfld ) ) )
29 26 28 ax-mp abs = ( norm ‘ ( ℤMod ‘ ℂfld ) )
30 eqid ( .g ‘ ℂfld ) = ( .g ‘ ℂfld )
31 2 30 zlmvsca ( .g ‘ ℂfld ) = ( ·𝑠 ‘ ( ℤMod ‘ ℂfld ) )
32 2 zlmsca ( ℂfld ∈ V → ℤring = ( Scalar ‘ ( ℤMod ‘ ℂfld ) ) )
33 26 32 ax-mp ring = ( Scalar ‘ ( ℤMod ‘ ℂfld ) )
34 zringbas ℤ = ( Base ‘ ℤring )
35 zringnm ( norm ‘ ℤring ) = ( abs ↾ ℤ )
36 35 eqcomi ( abs ↾ ℤ ) = ( norm ‘ ℤring )
37 25 29 31 33 34 36 isnlm ( ( ℤMod ‘ ℂfld ) ∈ NrmMod ↔ ( ( ( ℤMod ‘ ℂfld ) ∈ NrmGrp ∧ ( ℤMod ‘ ℂfld ) ∈ LMod ∧ ℤring ∈ NrmRing ) ∧ ∀ 𝑧 ∈ ℤ ∀ 𝑥 ∈ ℂ ( abs ‘ ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) ) )
38 12 23 37 mpbir2an ( ℤMod ‘ ℂfld ) ∈ NrmMod