Step |
Hyp |
Ref |
Expression |
1 |
|
cnnrg |
⊢ ℂfld ∈ NrmRing |
2 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
3 |
2
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
4 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
5 |
4
|
subrgnrg |
⊢ ( ( ℂfld ∈ NrmRing ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ℝfld ∈ NrmRing ) |
6 |
1 3 5
|
mp2an |
⊢ ℝfld ∈ NrmRing |
7 |
|
eqid |
⊢ ( ℤMod ‘ ℝfld ) = ( ℤMod ‘ ℝfld ) |
8 |
7
|
zhmnrg |
⊢ ( ℝfld ∈ NrmRing → ( ℤMod ‘ ℝfld ) ∈ NrmRing ) |
9 |
|
nrgngp |
⊢ ( ( ℤMod ‘ ℝfld ) ∈ NrmRing → ( ℤMod ‘ ℝfld ) ∈ NrmGrp ) |
10 |
6 8 9
|
mp2b |
⊢ ( ℤMod ‘ ℝfld ) ∈ NrmGrp |
11 |
|
nrgring |
⊢ ( ℝfld ∈ NrmRing → ℝfld ∈ Ring ) |
12 |
|
ringabl |
⊢ ( ℝfld ∈ Ring → ℝfld ∈ Abel ) |
13 |
6 11 12
|
mp2b |
⊢ ℝfld ∈ Abel |
14 |
7
|
zlmlmod |
⊢ ( ℝfld ∈ Abel ↔ ( ℤMod ‘ ℝfld ) ∈ LMod ) |
15 |
13 14
|
mpbi |
⊢ ( ℤMod ‘ ℝfld ) ∈ LMod |
16 |
|
zringnrg |
⊢ ℤring ∈ NrmRing |
17 |
10 15 16
|
3pm3.2i |
⊢ ( ( ℤMod ‘ ℝfld ) ∈ NrmGrp ∧ ( ℤMod ‘ ℝfld ) ∈ LMod ∧ ℤring ∈ NrmRing ) |
18 |
|
simpl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑧 ∈ ℤ ) |
19 |
18
|
zcnd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑧 ∈ ℂ ) |
20 |
|
simpr |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
22 |
19 21
|
absmuld |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( abs ‘ ( 𝑧 · 𝑥 ) ) = ( ( abs ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) ) |
23 |
|
subrgsubg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) ) |
24 |
3 23
|
ax-mp |
⊢ ℝ ∈ ( SubGrp ‘ ℂfld ) |
25 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
26 |
|
eqid |
⊢ ( .g ‘ ℝfld ) = ( .g ‘ ℝfld ) |
27 |
7 26
|
zlmvsca |
⊢ ( .g ‘ ℝfld ) = ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) |
28 |
27
|
eqcomi |
⊢ ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) = ( .g ‘ ℝfld ) |
29 |
25 4 28
|
subgmulg |
⊢ ( ( ℝ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) |
30 |
24 29
|
mp3an1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) |
31 |
|
cnfldmulg |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 · 𝑥 ) ) |
32 |
21 31
|
syldan |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 · 𝑥 ) ) |
33 |
30 32
|
eqtr3d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) = ( 𝑧 · 𝑥 ) ) |
34 |
33
|
fveq2d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) ) |
35 |
|
zre |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) |
36 |
|
remulcl |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 · 𝑥 ) ∈ ℝ ) |
37 |
|
fvres |
⊢ ( ( 𝑧 · 𝑥 ) ∈ ℝ → ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) ) |
39 |
35 38
|
sylan |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) ) |
40 |
34 39
|
eqtrd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) ) |
41 |
|
fvres |
⊢ ( 𝑧 ∈ ℤ → ( ( abs ↾ ℤ ) ‘ 𝑧 ) = ( abs ‘ 𝑧 ) ) |
42 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ → ( ( abs ↾ ℝ ) ‘ 𝑥 ) = ( abs ‘ 𝑥 ) ) |
43 |
41 42
|
oveqan12d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) ) |
44 |
22 40 43
|
3eqtr4d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) ) |
45 |
44
|
rgen2 |
⊢ ∀ 𝑧 ∈ ℤ ∀ 𝑥 ∈ ℝ ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) |
46 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
47 |
7 46
|
zlmbas |
⊢ ℝ = ( Base ‘ ( ℤMod ‘ ℝfld ) ) |
48 |
|
recusp |
⊢ ℝfld ∈ CUnifSp |
49 |
48
|
elexi |
⊢ ℝfld ∈ V |
50 |
|
cnring |
⊢ ℂfld ∈ Ring |
51 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
52 |
50 51
|
ax-mp |
⊢ ℂfld ∈ Mnd |
53 |
|
0re |
⊢ 0 ∈ ℝ |
54 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
55 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
56 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
57 |
|
cnfldnm |
⊢ abs = ( norm ‘ ℂfld ) |
58 |
4 55 56 57
|
ressnm |
⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ ) → ( abs ↾ ℝ ) = ( norm ‘ ℝfld ) ) |
59 |
52 53 54 58
|
mp3an |
⊢ ( abs ↾ ℝ ) = ( norm ‘ ℝfld ) |
60 |
7 59
|
zlmnm |
⊢ ( ℝfld ∈ V → ( abs ↾ ℝ ) = ( norm ‘ ( ℤMod ‘ ℝfld ) ) ) |
61 |
49 60
|
ax-mp |
⊢ ( abs ↾ ℝ ) = ( norm ‘ ( ℤMod ‘ ℝfld ) ) |
62 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) = ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) |
63 |
7
|
zlmsca |
⊢ ( ℝfld ∈ V → ℤring = ( Scalar ‘ ( ℤMod ‘ ℝfld ) ) ) |
64 |
49 63
|
ax-mp |
⊢ ℤring = ( Scalar ‘ ( ℤMod ‘ ℝfld ) ) |
65 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
66 |
|
zringnm |
⊢ ( norm ‘ ℤring ) = ( abs ↾ ℤ ) |
67 |
66
|
eqcomi |
⊢ ( abs ↾ ℤ ) = ( norm ‘ ℤring ) |
68 |
47 61 62 64 65 67
|
isnlm |
⊢ ( ( ℤMod ‘ ℝfld ) ∈ NrmMod ↔ ( ( ( ℤMod ‘ ℝfld ) ∈ NrmGrp ∧ ( ℤMod ‘ ℝfld ) ∈ LMod ∧ ℤring ∈ NrmRing ) ∧ ∀ 𝑧 ∈ ℤ ∀ 𝑥 ∈ ℝ ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) ) ) |
69 |
17 45 68
|
mpbir2an |
⊢ ( ℤMod ‘ ℝfld ) ∈ NrmMod |