Metamath Proof Explorer


Theorem rezh

Description: The ZZ -module of RR is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018)

Ref Expression
Assertion rezh ( ℤMod ‘ ℝfld ) ∈ NrmMod

Proof

Step Hyp Ref Expression
1 cnnrg fld ∈ NrmRing
2 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
3 2 simpli ℝ ∈ ( SubRing ‘ ℂfld )
4 df-refld fld = ( ℂflds ℝ )
5 4 subrgnrg ( ( ℂfld ∈ NrmRing ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ℝfld ∈ NrmRing )
6 1 3 5 mp2an fld ∈ NrmRing
7 eqid ( ℤMod ‘ ℝfld ) = ( ℤMod ‘ ℝfld )
8 7 zhmnrg ( ℝfld ∈ NrmRing → ( ℤMod ‘ ℝfld ) ∈ NrmRing )
9 nrgngp ( ( ℤMod ‘ ℝfld ) ∈ NrmRing → ( ℤMod ‘ ℝfld ) ∈ NrmGrp )
10 6 8 9 mp2b ( ℤMod ‘ ℝfld ) ∈ NrmGrp
11 nrgring ( ℝfld ∈ NrmRing → ℝfld ∈ Ring )
12 ringabl ( ℝfld ∈ Ring → ℝfld ∈ Abel )
13 6 11 12 mp2b fld ∈ Abel
14 7 zlmlmod ( ℝfld ∈ Abel ↔ ( ℤMod ‘ ℝfld ) ∈ LMod )
15 13 14 mpbi ( ℤMod ‘ ℝfld ) ∈ LMod
16 zringnrg ring ∈ NrmRing
17 10 15 16 3pm3.2i ( ( ℤMod ‘ ℝfld ) ∈ NrmGrp ∧ ( ℤMod ‘ ℝfld ) ∈ LMod ∧ ℤring ∈ NrmRing )
18 simpl ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑧 ∈ ℤ )
19 18 zcnd ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑧 ∈ ℂ )
20 simpr ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ )
21 20 recnd ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ )
22 19 21 absmuld ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( abs ‘ ( 𝑧 · 𝑥 ) ) = ( ( abs ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) )
23 subrgsubg ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) )
24 3 23 ax-mp ℝ ∈ ( SubGrp ‘ ℂfld )
25 eqid ( .g ‘ ℂfld ) = ( .g ‘ ℂfld )
26 eqid ( .g ‘ ℝfld ) = ( .g ‘ ℝfld )
27 7 26 zlmvsca ( .g ‘ ℝfld ) = ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) )
28 27 eqcomi ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) = ( .g ‘ ℝfld )
29 25 4 28 subgmulg ( ( ℝ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) )
30 24 29 mp3an1 ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) )
31 cnfldmulg ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 · 𝑥 ) )
32 21 31 syldan ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 · 𝑥 ) )
33 30 32 eqtr3d ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) = ( 𝑧 · 𝑥 ) )
34 33 fveq2d ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) )
35 zre ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ )
36 remulcl ( ( 𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 · 𝑥 ) ∈ ℝ )
37 fvres ( ( 𝑧 · 𝑥 ) ∈ ℝ → ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) )
38 36 37 syl ( ( 𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) )
39 35 38 sylan ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) )
40 34 39 eqtrd ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) )
41 fvres ( 𝑧 ∈ ℤ → ( ( abs ↾ ℤ ) ‘ 𝑧 ) = ( abs ‘ 𝑧 ) )
42 fvres ( 𝑥 ∈ ℝ → ( ( abs ↾ ℝ ) ‘ 𝑥 ) = ( abs ‘ 𝑥 ) )
43 41 42 oveqan12d ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) )
44 22 40 43 3eqtr4d ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) )
45 44 rgen2 𝑧 ∈ ℤ ∀ 𝑥 ∈ ℝ ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) )
46 rebase ℝ = ( Base ‘ ℝfld )
47 7 46 zlmbas ℝ = ( Base ‘ ( ℤMod ‘ ℝfld ) )
48 recusp fld ∈ CUnifSp
49 48 elexi fld ∈ V
50 cnring fld ∈ Ring
51 ringmnd ( ℂfld ∈ Ring → ℂfld ∈ Mnd )
52 50 51 ax-mp fld ∈ Mnd
53 0re 0 ∈ ℝ
54 ax-resscn ℝ ⊆ ℂ
55 cnfldbas ℂ = ( Base ‘ ℂfld )
56 cnfld0 0 = ( 0g ‘ ℂfld )
57 cnfldnm abs = ( norm ‘ ℂfld )
58 4 55 56 57 ressnm ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ ) → ( abs ↾ ℝ ) = ( norm ‘ ℝfld ) )
59 52 53 54 58 mp3an ( abs ↾ ℝ ) = ( norm ‘ ℝfld )
60 7 59 zlmnm ( ℝfld ∈ V → ( abs ↾ ℝ ) = ( norm ‘ ( ℤMod ‘ ℝfld ) ) )
61 49 60 ax-mp ( abs ↾ ℝ ) = ( norm ‘ ( ℤMod ‘ ℝfld ) )
62 eqid ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) = ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) )
63 7 zlmsca ( ℝfld ∈ V → ℤring = ( Scalar ‘ ( ℤMod ‘ ℝfld ) ) )
64 49 63 ax-mp ring = ( Scalar ‘ ( ℤMod ‘ ℝfld ) )
65 zringbas ℤ = ( Base ‘ ℤring )
66 zringnm ( norm ‘ ℤring ) = ( abs ↾ ℤ )
67 66 eqcomi ( abs ↾ ℤ ) = ( norm ‘ ℤring )
68 47 61 62 64 65 67 isnlm ( ( ℤMod ‘ ℝfld ) ∈ NrmMod ↔ ( ( ( ℤMod ‘ ℝfld ) ∈ NrmGrp ∧ ( ℤMod ‘ ℝfld ) ∈ LMod ∧ ℤring ∈ NrmRing ) ∧ ∀ 𝑧 ∈ ℤ ∀ 𝑥 ∈ ℝ ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) ) )
69 17 45 68 mpbir2an ( ℤMod ‘ ℝfld ) ∈ NrmMod