| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnnrg | ⊢ ℂfld  ∈  NrmRing | 
						
							| 2 |  | resubdrg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  ∧  ℝfld  ∈  DivRing ) | 
						
							| 3 | 2 | simpli | ⊢ ℝ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 4 |  | df-refld | ⊢ ℝfld  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 5 | 4 | subrgnrg | ⊢ ( ( ℂfld  ∈  NrmRing  ∧  ℝ  ∈  ( SubRing ‘ ℂfld ) )  →  ℝfld  ∈  NrmRing ) | 
						
							| 6 | 1 3 5 | mp2an | ⊢ ℝfld  ∈  NrmRing | 
						
							| 7 |  | eqid | ⊢ ( ℤMod ‘ ℝfld )  =  ( ℤMod ‘ ℝfld ) | 
						
							| 8 | 7 | zhmnrg | ⊢ ( ℝfld  ∈  NrmRing  →  ( ℤMod ‘ ℝfld )  ∈  NrmRing ) | 
						
							| 9 |  | nrgngp | ⊢ ( ( ℤMod ‘ ℝfld )  ∈  NrmRing  →  ( ℤMod ‘ ℝfld )  ∈  NrmGrp ) | 
						
							| 10 | 6 8 9 | mp2b | ⊢ ( ℤMod ‘ ℝfld )  ∈  NrmGrp | 
						
							| 11 |  | nrgring | ⊢ ( ℝfld  ∈  NrmRing  →  ℝfld  ∈  Ring ) | 
						
							| 12 |  | ringabl | ⊢ ( ℝfld  ∈  Ring  →  ℝfld  ∈  Abel ) | 
						
							| 13 | 6 11 12 | mp2b | ⊢ ℝfld  ∈  Abel | 
						
							| 14 | 7 | zlmlmod | ⊢ ( ℝfld  ∈  Abel  ↔  ( ℤMod ‘ ℝfld )  ∈  LMod ) | 
						
							| 15 | 13 14 | mpbi | ⊢ ( ℤMod ‘ ℝfld )  ∈  LMod | 
						
							| 16 |  | zringnrg | ⊢ ℤring  ∈  NrmRing | 
						
							| 17 | 10 15 16 | 3pm3.2i | ⊢ ( ( ℤMod ‘ ℝfld )  ∈  NrmGrp  ∧  ( ℤMod ‘ ℝfld )  ∈  LMod  ∧  ℤring  ∈  NrmRing ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  𝑧  ∈  ℤ ) | 
						
							| 19 | 18 | zcnd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  𝑧  ∈  ℂ ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 21 | 20 | recnd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 22 | 19 21 | absmuld | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( abs ‘ ( 𝑧  ·  𝑥 ) )  =  ( ( abs ‘ 𝑧 )  ·  ( abs ‘ 𝑥 ) ) ) | 
						
							| 23 |  | subrgsubg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  →  ℝ  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 24 | 3 23 | ax-mp | ⊢ ℝ  ∈  ( SubGrp ‘ ℂfld ) | 
						
							| 25 |  | eqid | ⊢ ( .g ‘ ℂfld )  =  ( .g ‘ ℂfld ) | 
						
							| 26 |  | eqid | ⊢ ( .g ‘ ℝfld )  =  ( .g ‘ ℝfld ) | 
						
							| 27 | 7 26 | zlmvsca | ⊢ ( .g ‘ ℝfld )  =  (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) | 
						
							| 28 | 27 | eqcomi | ⊢ (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) )  =  ( .g ‘ ℝfld ) | 
						
							| 29 | 25 4 28 | subgmulg | ⊢ ( ( ℝ  ∈  ( SubGrp ‘ ℂfld )  ∧  𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( 𝑧 ( .g ‘ ℂfld ) 𝑥 )  =  ( 𝑧 (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) | 
						
							| 30 | 24 29 | mp3an1 | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( 𝑧 ( .g ‘ ℂfld ) 𝑥 )  =  ( 𝑧 (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) | 
						
							| 31 |  | cnfldmulg | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℂ )  →  ( 𝑧 ( .g ‘ ℂfld ) 𝑥 )  =  ( 𝑧  ·  𝑥 ) ) | 
						
							| 32 | 21 31 | syldan | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( 𝑧 ( .g ‘ ℂfld ) 𝑥 )  =  ( 𝑧  ·  𝑥 ) ) | 
						
							| 33 | 30 32 | eqtr3d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( 𝑧 (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 )  =  ( 𝑧  ·  𝑥 ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( ( abs  ↾  ℝ ) ‘ ( 𝑧 (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) )  =  ( ( abs  ↾  ℝ ) ‘ ( 𝑧  ·  𝑥 ) ) ) | 
						
							| 35 |  | zre | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℝ ) | 
						
							| 36 |  | remulcl | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑧  ·  𝑥 )  ∈  ℝ ) | 
						
							| 37 |  | fvres | ⊢ ( ( 𝑧  ·  𝑥 )  ∈  ℝ  →  ( ( abs  ↾  ℝ ) ‘ ( 𝑧  ·  𝑥 ) )  =  ( abs ‘ ( 𝑧  ·  𝑥 ) ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( abs  ↾  ℝ ) ‘ ( 𝑧  ·  𝑥 ) )  =  ( abs ‘ ( 𝑧  ·  𝑥 ) ) ) | 
						
							| 39 | 35 38 | sylan | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( ( abs  ↾  ℝ ) ‘ ( 𝑧  ·  𝑥 ) )  =  ( abs ‘ ( 𝑧  ·  𝑥 ) ) ) | 
						
							| 40 | 34 39 | eqtrd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( ( abs  ↾  ℝ ) ‘ ( 𝑧 (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) )  =  ( abs ‘ ( 𝑧  ·  𝑥 ) ) ) | 
						
							| 41 |  | fvres | ⊢ ( 𝑧  ∈  ℤ  →  ( ( abs  ↾  ℤ ) ‘ 𝑧 )  =  ( abs ‘ 𝑧 ) ) | 
						
							| 42 |  | fvres | ⊢ ( 𝑥  ∈  ℝ  →  ( ( abs  ↾  ℝ ) ‘ 𝑥 )  =  ( abs ‘ 𝑥 ) ) | 
						
							| 43 | 41 42 | oveqan12d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( ( ( abs  ↾  ℤ ) ‘ 𝑧 )  ·  ( ( abs  ↾  ℝ ) ‘ 𝑥 ) )  =  ( ( abs ‘ 𝑧 )  ·  ( abs ‘ 𝑥 ) ) ) | 
						
							| 44 | 22 40 43 | 3eqtr4d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑥  ∈  ℝ )  →  ( ( abs  ↾  ℝ ) ‘ ( 𝑧 (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) )  =  ( ( ( abs  ↾  ℤ ) ‘ 𝑧 )  ·  ( ( abs  ↾  ℝ ) ‘ 𝑥 ) ) ) | 
						
							| 45 | 44 | rgen2 | ⊢ ∀ 𝑧  ∈  ℤ ∀ 𝑥  ∈  ℝ ( ( abs  ↾  ℝ ) ‘ ( 𝑧 (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) )  =  ( ( ( abs  ↾  ℤ ) ‘ 𝑧 )  ·  ( ( abs  ↾  ℝ ) ‘ 𝑥 ) ) | 
						
							| 46 |  | rebase | ⊢ ℝ  =  ( Base ‘ ℝfld ) | 
						
							| 47 | 7 46 | zlmbas | ⊢ ℝ  =  ( Base ‘ ( ℤMod ‘ ℝfld ) ) | 
						
							| 48 |  | recusp | ⊢ ℝfld  ∈  CUnifSp | 
						
							| 49 | 48 | elexi | ⊢ ℝfld  ∈  V | 
						
							| 50 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 51 |  | ringmnd | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  Mnd ) | 
						
							| 52 | 50 51 | ax-mp | ⊢ ℂfld  ∈  Mnd | 
						
							| 53 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 54 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 55 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 56 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 57 |  | cnfldnm | ⊢ abs  =  ( norm ‘ ℂfld ) | 
						
							| 58 | 4 55 56 57 | ressnm | ⊢ ( ( ℂfld  ∈  Mnd  ∧  0  ∈  ℝ  ∧  ℝ  ⊆  ℂ )  →  ( abs  ↾  ℝ )  =  ( norm ‘ ℝfld ) ) | 
						
							| 59 | 52 53 54 58 | mp3an | ⊢ ( abs  ↾  ℝ )  =  ( norm ‘ ℝfld ) | 
						
							| 60 | 7 59 | zlmnm | ⊢ ( ℝfld  ∈  V  →  ( abs  ↾  ℝ )  =  ( norm ‘ ( ℤMod ‘ ℝfld ) ) ) | 
						
							| 61 | 49 60 | ax-mp | ⊢ ( abs  ↾  ℝ )  =  ( norm ‘ ( ℤMod ‘ ℝfld ) ) | 
						
							| 62 |  | eqid | ⊢ (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) )  =  (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) | 
						
							| 63 | 7 | zlmsca | ⊢ ( ℝfld  ∈  V  →  ℤring  =  ( Scalar ‘ ( ℤMod ‘ ℝfld ) ) ) | 
						
							| 64 | 49 63 | ax-mp | ⊢ ℤring  =  ( Scalar ‘ ( ℤMod ‘ ℝfld ) ) | 
						
							| 65 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 66 |  | zringnm | ⊢ ( norm ‘ ℤring )  =  ( abs  ↾  ℤ ) | 
						
							| 67 | 66 | eqcomi | ⊢ ( abs  ↾  ℤ )  =  ( norm ‘ ℤring ) | 
						
							| 68 | 47 61 62 64 65 67 | isnlm | ⊢ ( ( ℤMod ‘ ℝfld )  ∈  NrmMod  ↔  ( ( ( ℤMod ‘ ℝfld )  ∈  NrmGrp  ∧  ( ℤMod ‘ ℝfld )  ∈  LMod  ∧  ℤring  ∈  NrmRing )  ∧  ∀ 𝑧  ∈  ℤ ∀ 𝑥  ∈  ℝ ( ( abs  ↾  ℝ ) ‘ ( 𝑧 (  ·𝑠  ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) )  =  ( ( ( abs  ↾  ℤ ) ‘ 𝑧 )  ·  ( ( abs  ↾  ℝ ) ‘ 𝑥 ) ) ) ) | 
						
							| 69 | 17 45 68 | mpbir2an | ⊢ ( ℤMod ‘ ℝfld )  ∈  NrmMod |