| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnnrg |
⊢ ℂfld ∈ NrmRing |
| 2 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
| 3 |
2
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 4 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 5 |
4
|
subrgnrg |
⊢ ( ( ℂfld ∈ NrmRing ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ℝfld ∈ NrmRing ) |
| 6 |
1 3 5
|
mp2an |
⊢ ℝfld ∈ NrmRing |
| 7 |
|
eqid |
⊢ ( ℤMod ‘ ℝfld ) = ( ℤMod ‘ ℝfld ) |
| 8 |
7
|
zhmnrg |
⊢ ( ℝfld ∈ NrmRing → ( ℤMod ‘ ℝfld ) ∈ NrmRing ) |
| 9 |
|
nrgngp |
⊢ ( ( ℤMod ‘ ℝfld ) ∈ NrmRing → ( ℤMod ‘ ℝfld ) ∈ NrmGrp ) |
| 10 |
6 8 9
|
mp2b |
⊢ ( ℤMod ‘ ℝfld ) ∈ NrmGrp |
| 11 |
|
nrgring |
⊢ ( ℝfld ∈ NrmRing → ℝfld ∈ Ring ) |
| 12 |
|
ringabl |
⊢ ( ℝfld ∈ Ring → ℝfld ∈ Abel ) |
| 13 |
6 11 12
|
mp2b |
⊢ ℝfld ∈ Abel |
| 14 |
7
|
zlmlmod |
⊢ ( ℝfld ∈ Abel ↔ ( ℤMod ‘ ℝfld ) ∈ LMod ) |
| 15 |
13 14
|
mpbi |
⊢ ( ℤMod ‘ ℝfld ) ∈ LMod |
| 16 |
|
zringnrg |
⊢ ℤring ∈ NrmRing |
| 17 |
10 15 16
|
3pm3.2i |
⊢ ( ( ℤMod ‘ ℝfld ) ∈ NrmGrp ∧ ( ℤMod ‘ ℝfld ) ∈ LMod ∧ ℤring ∈ NrmRing ) |
| 18 |
|
simpl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑧 ∈ ℤ ) |
| 19 |
18
|
zcnd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑧 ∈ ℂ ) |
| 20 |
|
simpr |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 22 |
19 21
|
absmuld |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( abs ‘ ( 𝑧 · 𝑥 ) ) = ( ( abs ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) ) |
| 23 |
|
subrgsubg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) ) |
| 24 |
3 23
|
ax-mp |
⊢ ℝ ∈ ( SubGrp ‘ ℂfld ) |
| 25 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
| 26 |
|
eqid |
⊢ ( .g ‘ ℝfld ) = ( .g ‘ ℝfld ) |
| 27 |
7 26
|
zlmvsca |
⊢ ( .g ‘ ℝfld ) = ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) |
| 28 |
27
|
eqcomi |
⊢ ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) = ( .g ‘ ℝfld ) |
| 29 |
25 4 28
|
subgmulg |
⊢ ( ( ℝ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) |
| 30 |
24 29
|
mp3an1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) |
| 31 |
|
cnfldmulg |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 · 𝑥 ) ) |
| 32 |
21 31
|
syldan |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( .g ‘ ℂfld ) 𝑥 ) = ( 𝑧 · 𝑥 ) ) |
| 33 |
30 32
|
eqtr3d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) = ( 𝑧 · 𝑥 ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) ) |
| 35 |
|
zre |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) |
| 36 |
|
remulcl |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 · 𝑥 ) ∈ ℝ ) |
| 37 |
|
fvres |
⊢ ( ( 𝑧 · 𝑥 ) ∈ ℝ → ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) ) |
| 39 |
35 38
|
sylan |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 · 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) ) |
| 40 |
34 39
|
eqtrd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( abs ‘ ( 𝑧 · 𝑥 ) ) ) |
| 41 |
|
fvres |
⊢ ( 𝑧 ∈ ℤ → ( ( abs ↾ ℤ ) ‘ 𝑧 ) = ( abs ‘ 𝑧 ) ) |
| 42 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ → ( ( abs ↾ ℝ ) ‘ 𝑥 ) = ( abs ‘ 𝑥 ) ) |
| 43 |
41 42
|
oveqan12d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝑧 ) · ( abs ‘ 𝑥 ) ) ) |
| 44 |
22 40 43
|
3eqtr4d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) ) |
| 45 |
44
|
rgen2 |
⊢ ∀ 𝑧 ∈ ℤ ∀ 𝑥 ∈ ℝ ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) |
| 46 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
| 47 |
7 46
|
zlmbas |
⊢ ℝ = ( Base ‘ ( ℤMod ‘ ℝfld ) ) |
| 48 |
|
recusp |
⊢ ℝfld ∈ CUnifSp |
| 49 |
48
|
elexi |
⊢ ℝfld ∈ V |
| 50 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 51 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
| 52 |
50 51
|
ax-mp |
⊢ ℂfld ∈ Mnd |
| 53 |
|
0re |
⊢ 0 ∈ ℝ |
| 54 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 55 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 56 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 57 |
|
cnfldnm |
⊢ abs = ( norm ‘ ℂfld ) |
| 58 |
4 55 56 57
|
ressnm |
⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ ) → ( abs ↾ ℝ ) = ( norm ‘ ℝfld ) ) |
| 59 |
52 53 54 58
|
mp3an |
⊢ ( abs ↾ ℝ ) = ( norm ‘ ℝfld ) |
| 60 |
7 59
|
zlmnm |
⊢ ( ℝfld ∈ V → ( abs ↾ ℝ ) = ( norm ‘ ( ℤMod ‘ ℝfld ) ) ) |
| 61 |
49 60
|
ax-mp |
⊢ ( abs ↾ ℝ ) = ( norm ‘ ( ℤMod ‘ ℝfld ) ) |
| 62 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) = ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) |
| 63 |
7
|
zlmsca |
⊢ ( ℝfld ∈ V → ℤring = ( Scalar ‘ ( ℤMod ‘ ℝfld ) ) ) |
| 64 |
49 63
|
ax-mp |
⊢ ℤring = ( Scalar ‘ ( ℤMod ‘ ℝfld ) ) |
| 65 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 66 |
|
zringnm |
⊢ ( norm ‘ ℤring ) = ( abs ↾ ℤ ) |
| 67 |
66
|
eqcomi |
⊢ ( abs ↾ ℤ ) = ( norm ‘ ℤring ) |
| 68 |
47 61 62 64 65 67
|
isnlm |
⊢ ( ( ℤMod ‘ ℝfld ) ∈ NrmMod ↔ ( ( ( ℤMod ‘ ℝfld ) ∈ NrmGrp ∧ ( ℤMod ‘ ℝfld ) ∈ LMod ∧ ℤring ∈ NrmRing ) ∧ ∀ 𝑧 ∈ ℤ ∀ 𝑥 ∈ ℝ ( ( abs ↾ ℝ ) ‘ ( 𝑧 ( ·𝑠 ‘ ( ℤMod ‘ ℝfld ) ) 𝑥 ) ) = ( ( ( abs ↾ ℤ ) ‘ 𝑧 ) · ( ( abs ↾ ℝ ) ‘ 𝑥 ) ) ) ) |
| 69 |
17 45 68
|
mpbir2an |
⊢ ( ℤMod ‘ ℝfld ) ∈ NrmMod |