| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnnrg |  |-  CCfld e. NrmRing | 
						
							| 2 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 3 | 2 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 4 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 5 | 4 | subrgnrg |  |-  ( ( CCfld e. NrmRing /\ RR e. ( SubRing ` CCfld ) ) -> RRfld e. NrmRing ) | 
						
							| 6 | 1 3 5 | mp2an |  |-  RRfld e. NrmRing | 
						
							| 7 |  | eqid |  |-  ( ZMod ` RRfld ) = ( ZMod ` RRfld ) | 
						
							| 8 | 7 | zhmnrg |  |-  ( RRfld e. NrmRing -> ( ZMod ` RRfld ) e. NrmRing ) | 
						
							| 9 |  | nrgngp |  |-  ( ( ZMod ` RRfld ) e. NrmRing -> ( ZMod ` RRfld ) e. NrmGrp ) | 
						
							| 10 | 6 8 9 | mp2b |  |-  ( ZMod ` RRfld ) e. NrmGrp | 
						
							| 11 |  | nrgring |  |-  ( RRfld e. NrmRing -> RRfld e. Ring ) | 
						
							| 12 |  | ringabl |  |-  ( RRfld e. Ring -> RRfld e. Abel ) | 
						
							| 13 | 6 11 12 | mp2b |  |-  RRfld e. Abel | 
						
							| 14 | 7 | zlmlmod |  |-  ( RRfld e. Abel <-> ( ZMod ` RRfld ) e. LMod ) | 
						
							| 15 | 13 14 | mpbi |  |-  ( ZMod ` RRfld ) e. LMod | 
						
							| 16 |  | zringnrg |  |-  ZZring e. NrmRing | 
						
							| 17 | 10 15 16 | 3pm3.2i |  |-  ( ( ZMod ` RRfld ) e. NrmGrp /\ ( ZMod ` RRfld ) e. LMod /\ ZZring e. NrmRing ) | 
						
							| 18 |  | simpl |  |-  ( ( z e. ZZ /\ x e. RR ) -> z e. ZZ ) | 
						
							| 19 | 18 | zcnd |  |-  ( ( z e. ZZ /\ x e. RR ) -> z e. CC ) | 
						
							| 20 |  | simpr |  |-  ( ( z e. ZZ /\ x e. RR ) -> x e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ( z e. ZZ /\ x e. RR ) -> x e. CC ) | 
						
							| 22 | 19 21 | absmuld |  |-  ( ( z e. ZZ /\ x e. RR ) -> ( abs ` ( z x. x ) ) = ( ( abs ` z ) x. ( abs ` x ) ) ) | 
						
							| 23 |  | subrgsubg |  |-  ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) | 
						
							| 24 | 3 23 | ax-mp |  |-  RR e. ( SubGrp ` CCfld ) | 
						
							| 25 |  | eqid |  |-  ( .g ` CCfld ) = ( .g ` CCfld ) | 
						
							| 26 |  | eqid |  |-  ( .g ` RRfld ) = ( .g ` RRfld ) | 
						
							| 27 | 7 26 | zlmvsca |  |-  ( .g ` RRfld ) = ( .s ` ( ZMod ` RRfld ) ) | 
						
							| 28 | 27 | eqcomi |  |-  ( .s ` ( ZMod ` RRfld ) ) = ( .g ` RRfld ) | 
						
							| 29 | 25 4 28 | subgmulg |  |-  ( ( RR e. ( SubGrp ` CCfld ) /\ z e. ZZ /\ x e. RR ) -> ( z ( .g ` CCfld ) x ) = ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) | 
						
							| 30 | 24 29 | mp3an1 |  |-  ( ( z e. ZZ /\ x e. RR ) -> ( z ( .g ` CCfld ) x ) = ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) | 
						
							| 31 |  | cnfldmulg |  |-  ( ( z e. ZZ /\ x e. CC ) -> ( z ( .g ` CCfld ) x ) = ( z x. x ) ) | 
						
							| 32 | 21 31 | syldan |  |-  ( ( z e. ZZ /\ x e. RR ) -> ( z ( .g ` CCfld ) x ) = ( z x. x ) ) | 
						
							| 33 | 30 32 | eqtr3d |  |-  ( ( z e. ZZ /\ x e. RR ) -> ( z ( .s ` ( ZMod ` RRfld ) ) x ) = ( z x. x ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( z e. ZZ /\ x e. RR ) -> ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( ( abs |` RR ) ` ( z x. x ) ) ) | 
						
							| 35 |  | zre |  |-  ( z e. ZZ -> z e. RR ) | 
						
							| 36 |  | remulcl |  |-  ( ( z e. RR /\ x e. RR ) -> ( z x. x ) e. RR ) | 
						
							| 37 |  | fvres |  |-  ( ( z x. x ) e. RR -> ( ( abs |` RR ) ` ( z x. x ) ) = ( abs ` ( z x. x ) ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( z e. RR /\ x e. RR ) -> ( ( abs |` RR ) ` ( z x. x ) ) = ( abs ` ( z x. x ) ) ) | 
						
							| 39 | 35 38 | sylan |  |-  ( ( z e. ZZ /\ x e. RR ) -> ( ( abs |` RR ) ` ( z x. x ) ) = ( abs ` ( z x. x ) ) ) | 
						
							| 40 | 34 39 | eqtrd |  |-  ( ( z e. ZZ /\ x e. RR ) -> ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( abs ` ( z x. x ) ) ) | 
						
							| 41 |  | fvres |  |-  ( z e. ZZ -> ( ( abs |` ZZ ) ` z ) = ( abs ` z ) ) | 
						
							| 42 |  | fvres |  |-  ( x e. RR -> ( ( abs |` RR ) ` x ) = ( abs ` x ) ) | 
						
							| 43 | 41 42 | oveqan12d |  |-  ( ( z e. ZZ /\ x e. RR ) -> ( ( ( abs |` ZZ ) ` z ) x. ( ( abs |` RR ) ` x ) ) = ( ( abs ` z ) x. ( abs ` x ) ) ) | 
						
							| 44 | 22 40 43 | 3eqtr4d |  |-  ( ( z e. ZZ /\ x e. RR ) -> ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( ( ( abs |` ZZ ) ` z ) x. ( ( abs |` RR ) ` x ) ) ) | 
						
							| 45 | 44 | rgen2 |  |-  A. z e. ZZ A. x e. RR ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( ( ( abs |` ZZ ) ` z ) x. ( ( abs |` RR ) ` x ) ) | 
						
							| 46 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 47 | 7 46 | zlmbas |  |-  RR = ( Base ` ( ZMod ` RRfld ) ) | 
						
							| 48 |  | recusp |  |-  RRfld e. CUnifSp | 
						
							| 49 | 48 | elexi |  |-  RRfld e. _V | 
						
							| 50 |  | cnring |  |-  CCfld e. Ring | 
						
							| 51 |  | ringmnd |  |-  ( CCfld e. Ring -> CCfld e. Mnd ) | 
						
							| 52 | 50 51 | ax-mp |  |-  CCfld e. Mnd | 
						
							| 53 |  | 0re |  |-  0 e. RR | 
						
							| 54 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 55 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 56 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 57 |  | cnfldnm |  |-  abs = ( norm ` CCfld ) | 
						
							| 58 | 4 55 56 57 | ressnm |  |-  ( ( CCfld e. Mnd /\ 0 e. RR /\ RR C_ CC ) -> ( abs |` RR ) = ( norm ` RRfld ) ) | 
						
							| 59 | 52 53 54 58 | mp3an |  |-  ( abs |` RR ) = ( norm ` RRfld ) | 
						
							| 60 | 7 59 | zlmnm |  |-  ( RRfld e. _V -> ( abs |` RR ) = ( norm ` ( ZMod ` RRfld ) ) ) | 
						
							| 61 | 49 60 | ax-mp |  |-  ( abs |` RR ) = ( norm ` ( ZMod ` RRfld ) ) | 
						
							| 62 |  | eqid |  |-  ( .s ` ( ZMod ` RRfld ) ) = ( .s ` ( ZMod ` RRfld ) ) | 
						
							| 63 | 7 | zlmsca |  |-  ( RRfld e. _V -> ZZring = ( Scalar ` ( ZMod ` RRfld ) ) ) | 
						
							| 64 | 49 63 | ax-mp |  |-  ZZring = ( Scalar ` ( ZMod ` RRfld ) ) | 
						
							| 65 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 66 |  | zringnm |  |-  ( norm ` ZZring ) = ( abs |` ZZ ) | 
						
							| 67 | 66 | eqcomi |  |-  ( abs |` ZZ ) = ( norm ` ZZring ) | 
						
							| 68 | 47 61 62 64 65 67 | isnlm |  |-  ( ( ZMod ` RRfld ) e. NrmMod <-> ( ( ( ZMod ` RRfld ) e. NrmGrp /\ ( ZMod ` RRfld ) e. LMod /\ ZZring e. NrmRing ) /\ A. z e. ZZ A. x e. RR ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( ( ( abs |` ZZ ) ` z ) x. ( ( abs |` RR ) ` x ) ) ) ) | 
						
							| 69 | 17 45 68 | mpbir2an |  |-  ( ZMod ` RRfld ) e. NrmMod |