Step |
Hyp |
Ref |
Expression |
1 |
|
cnnrg |
|- CCfld e. NrmRing |
2 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
3 |
2
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
4 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
5 |
4
|
subrgnrg |
|- ( ( CCfld e. NrmRing /\ RR e. ( SubRing ` CCfld ) ) -> RRfld e. NrmRing ) |
6 |
1 3 5
|
mp2an |
|- RRfld e. NrmRing |
7 |
|
eqid |
|- ( ZMod ` RRfld ) = ( ZMod ` RRfld ) |
8 |
7
|
zhmnrg |
|- ( RRfld e. NrmRing -> ( ZMod ` RRfld ) e. NrmRing ) |
9 |
|
nrgngp |
|- ( ( ZMod ` RRfld ) e. NrmRing -> ( ZMod ` RRfld ) e. NrmGrp ) |
10 |
6 8 9
|
mp2b |
|- ( ZMod ` RRfld ) e. NrmGrp |
11 |
|
nrgring |
|- ( RRfld e. NrmRing -> RRfld e. Ring ) |
12 |
|
ringabl |
|- ( RRfld e. Ring -> RRfld e. Abel ) |
13 |
6 11 12
|
mp2b |
|- RRfld e. Abel |
14 |
7
|
zlmlmod |
|- ( RRfld e. Abel <-> ( ZMod ` RRfld ) e. LMod ) |
15 |
13 14
|
mpbi |
|- ( ZMod ` RRfld ) e. LMod |
16 |
|
zringnrg |
|- ZZring e. NrmRing |
17 |
10 15 16
|
3pm3.2i |
|- ( ( ZMod ` RRfld ) e. NrmGrp /\ ( ZMod ` RRfld ) e. LMod /\ ZZring e. NrmRing ) |
18 |
|
simpl |
|- ( ( z e. ZZ /\ x e. RR ) -> z e. ZZ ) |
19 |
18
|
zcnd |
|- ( ( z e. ZZ /\ x e. RR ) -> z e. CC ) |
20 |
|
simpr |
|- ( ( z e. ZZ /\ x e. RR ) -> x e. RR ) |
21 |
20
|
recnd |
|- ( ( z e. ZZ /\ x e. RR ) -> x e. CC ) |
22 |
19 21
|
absmuld |
|- ( ( z e. ZZ /\ x e. RR ) -> ( abs ` ( z x. x ) ) = ( ( abs ` z ) x. ( abs ` x ) ) ) |
23 |
|
subrgsubg |
|- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
24 |
3 23
|
ax-mp |
|- RR e. ( SubGrp ` CCfld ) |
25 |
|
eqid |
|- ( .g ` CCfld ) = ( .g ` CCfld ) |
26 |
|
eqid |
|- ( .g ` RRfld ) = ( .g ` RRfld ) |
27 |
7 26
|
zlmvsca |
|- ( .g ` RRfld ) = ( .s ` ( ZMod ` RRfld ) ) |
28 |
27
|
eqcomi |
|- ( .s ` ( ZMod ` RRfld ) ) = ( .g ` RRfld ) |
29 |
25 4 28
|
subgmulg |
|- ( ( RR e. ( SubGrp ` CCfld ) /\ z e. ZZ /\ x e. RR ) -> ( z ( .g ` CCfld ) x ) = ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) |
30 |
24 29
|
mp3an1 |
|- ( ( z e. ZZ /\ x e. RR ) -> ( z ( .g ` CCfld ) x ) = ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) |
31 |
|
cnfldmulg |
|- ( ( z e. ZZ /\ x e. CC ) -> ( z ( .g ` CCfld ) x ) = ( z x. x ) ) |
32 |
21 31
|
syldan |
|- ( ( z e. ZZ /\ x e. RR ) -> ( z ( .g ` CCfld ) x ) = ( z x. x ) ) |
33 |
30 32
|
eqtr3d |
|- ( ( z e. ZZ /\ x e. RR ) -> ( z ( .s ` ( ZMod ` RRfld ) ) x ) = ( z x. x ) ) |
34 |
33
|
fveq2d |
|- ( ( z e. ZZ /\ x e. RR ) -> ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( ( abs |` RR ) ` ( z x. x ) ) ) |
35 |
|
zre |
|- ( z e. ZZ -> z e. RR ) |
36 |
|
remulcl |
|- ( ( z e. RR /\ x e. RR ) -> ( z x. x ) e. RR ) |
37 |
|
fvres |
|- ( ( z x. x ) e. RR -> ( ( abs |` RR ) ` ( z x. x ) ) = ( abs ` ( z x. x ) ) ) |
38 |
36 37
|
syl |
|- ( ( z e. RR /\ x e. RR ) -> ( ( abs |` RR ) ` ( z x. x ) ) = ( abs ` ( z x. x ) ) ) |
39 |
35 38
|
sylan |
|- ( ( z e. ZZ /\ x e. RR ) -> ( ( abs |` RR ) ` ( z x. x ) ) = ( abs ` ( z x. x ) ) ) |
40 |
34 39
|
eqtrd |
|- ( ( z e. ZZ /\ x e. RR ) -> ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( abs ` ( z x. x ) ) ) |
41 |
|
fvres |
|- ( z e. ZZ -> ( ( abs |` ZZ ) ` z ) = ( abs ` z ) ) |
42 |
|
fvres |
|- ( x e. RR -> ( ( abs |` RR ) ` x ) = ( abs ` x ) ) |
43 |
41 42
|
oveqan12d |
|- ( ( z e. ZZ /\ x e. RR ) -> ( ( ( abs |` ZZ ) ` z ) x. ( ( abs |` RR ) ` x ) ) = ( ( abs ` z ) x. ( abs ` x ) ) ) |
44 |
22 40 43
|
3eqtr4d |
|- ( ( z e. ZZ /\ x e. RR ) -> ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( ( ( abs |` ZZ ) ` z ) x. ( ( abs |` RR ) ` x ) ) ) |
45 |
44
|
rgen2 |
|- A. z e. ZZ A. x e. RR ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( ( ( abs |` ZZ ) ` z ) x. ( ( abs |` RR ) ` x ) ) |
46 |
|
rebase |
|- RR = ( Base ` RRfld ) |
47 |
7 46
|
zlmbas |
|- RR = ( Base ` ( ZMod ` RRfld ) ) |
48 |
|
recusp |
|- RRfld e. CUnifSp |
49 |
48
|
elexi |
|- RRfld e. _V |
50 |
|
cnring |
|- CCfld e. Ring |
51 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
52 |
50 51
|
ax-mp |
|- CCfld e. Mnd |
53 |
|
0re |
|- 0 e. RR |
54 |
|
ax-resscn |
|- RR C_ CC |
55 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
56 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
57 |
|
cnfldnm |
|- abs = ( norm ` CCfld ) |
58 |
4 55 56 57
|
ressnm |
|- ( ( CCfld e. Mnd /\ 0 e. RR /\ RR C_ CC ) -> ( abs |` RR ) = ( norm ` RRfld ) ) |
59 |
52 53 54 58
|
mp3an |
|- ( abs |` RR ) = ( norm ` RRfld ) |
60 |
7 59
|
zlmnm |
|- ( RRfld e. _V -> ( abs |` RR ) = ( norm ` ( ZMod ` RRfld ) ) ) |
61 |
49 60
|
ax-mp |
|- ( abs |` RR ) = ( norm ` ( ZMod ` RRfld ) ) |
62 |
|
eqid |
|- ( .s ` ( ZMod ` RRfld ) ) = ( .s ` ( ZMod ` RRfld ) ) |
63 |
7
|
zlmsca |
|- ( RRfld e. _V -> ZZring = ( Scalar ` ( ZMod ` RRfld ) ) ) |
64 |
49 63
|
ax-mp |
|- ZZring = ( Scalar ` ( ZMod ` RRfld ) ) |
65 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
66 |
|
zringnm |
|- ( norm ` ZZring ) = ( abs |` ZZ ) |
67 |
66
|
eqcomi |
|- ( abs |` ZZ ) = ( norm ` ZZring ) |
68 |
47 61 62 64 65 67
|
isnlm |
|- ( ( ZMod ` RRfld ) e. NrmMod <-> ( ( ( ZMod ` RRfld ) e. NrmGrp /\ ( ZMod ` RRfld ) e. LMod /\ ZZring e. NrmRing ) /\ A. z e. ZZ A. x e. RR ( ( abs |` RR ) ` ( z ( .s ` ( ZMod ` RRfld ) ) x ) ) = ( ( ( abs |` ZZ ) ` z ) x. ( ( abs |` RR ) ` x ) ) ) ) |
69 |
17 45 68
|
mpbir2an |
|- ( ZMod ` RRfld ) e. NrmMod |