Metamath Proof Explorer


Theorem rezh

Description: The ZZ -module of RR is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018)

Ref Expression
Assertion rezh ℤModfldNrmMod

Proof

Step Hyp Ref Expression
1 cnnrg fldNrmRing
2 resubdrg SubRingfldfldDivRing
3 2 simpli SubRingfld
4 df-refld fld=fld𝑠
5 4 subrgnrg fldNrmRingSubRingfldfldNrmRing
6 1 3 5 mp2an fldNrmRing
7 eqid ℤModfld=ℤModfld
8 7 zhmnrg fldNrmRingℤModfldNrmRing
9 nrgngp ℤModfldNrmRingℤModfldNrmGrp
10 6 8 9 mp2b ℤModfldNrmGrp
11 nrgring fldNrmRingfldRing
12 ringabl fldRingfldAbel
13 6 11 12 mp2b fldAbel
14 7 zlmlmod fldAbelℤModfldLMod
15 13 14 mpbi ℤModfldLMod
16 zringnrg ringNrmRing
17 10 15 16 3pm3.2i ℤModfldNrmGrpℤModfldLModringNrmRing
18 simpl zxz
19 18 zcnd zxz
20 simpr zxx
21 20 recnd zxx
22 19 21 absmuld zxzx=zx
23 subrgsubg SubRingfldSubGrpfld
24 3 23 ax-mp SubGrpfld
25 eqid fld=fld
26 eqid fld=fld
27 7 26 zlmvsca fld=ℤModfld
28 27 eqcomi ℤModfld=fld
29 25 4 28 subgmulg SubGrpfldzxzfldx=zℤModfldx
30 24 29 mp3an1 zxzfldx=zℤModfldx
31 cnfldmulg zxzfldx=zx
32 21 31 syldan zxzfldx=zx
33 30 32 eqtr3d zxzℤModfldx=zx
34 33 fveq2d zxabszℤModfldx=abszx
35 zre zz
36 remulcl zxzx
37 fvres zxabszx=zx
38 36 37 syl zxabszx=zx
39 35 38 sylan zxabszx=zx
40 34 39 eqtrd zxabszℤModfldx=zx
41 fvres zabsz=z
42 fvres xabsx=x
43 41 42 oveqan12d zxabszabsx=zx
44 22 40 43 3eqtr4d zxabszℤModfldx=abszabsx
45 44 rgen2 zxabszℤModfldx=abszabsx
46 rebase =Basefld
47 7 46 zlmbas =BaseℤModfld
48 recusp fldCUnifSp
49 48 elexi fldV
50 cnring fldRing
51 ringmnd fldRingfldMnd
52 50 51 ax-mp fldMnd
53 0re 0
54 ax-resscn
55 cnfldbas =Basefld
56 cnfld0 0=0fld
57 cnfldnm abs=normfld
58 4 55 56 57 ressnm fldMnd0abs=normfld
59 52 53 54 58 mp3an abs=normfld
60 7 59 zlmnm fldVabs=normℤModfld
61 49 60 ax-mp abs=normℤModfld
62 eqid ℤModfld=ℤModfld
63 7 zlmsca fldVring=ScalarℤModfld
64 49 63 ax-mp ring=ScalarℤModfld
65 zringbas =Basering
66 zringnm normring=abs
67 66 eqcomi abs=normring
68 47 61 62 64 65 67 isnlm ℤModfldNrmModℤModfldNrmGrpℤModfldLModringNrmRingzxabszℤModfldx=abszabsx
69 17 45 68 mpbir2an ℤModfldNrmMod