Metamath Proof Explorer


Theorem rezh

Description: The ZZ -module of RR is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018)

Ref Expression
Assertion rezh ℤMod fld NrmMod

Proof

Step Hyp Ref Expression
1 cnnrg fld NrmRing
2 resubdrg SubRing fld fld DivRing
3 2 simpli SubRing fld
4 df-refld fld = fld 𝑠
5 4 subrgnrg fld NrmRing SubRing fld fld NrmRing
6 1 3 5 mp2an fld NrmRing
7 eqid ℤMod fld = ℤMod fld
8 7 zhmnrg fld NrmRing ℤMod fld NrmRing
9 nrgngp ℤMod fld NrmRing ℤMod fld NrmGrp
10 6 8 9 mp2b ℤMod fld NrmGrp
11 nrgring fld NrmRing fld Ring
12 ringabl fld Ring fld Abel
13 6 11 12 mp2b fld Abel
14 7 zlmlmod fld Abel ℤMod fld LMod
15 13 14 mpbi ℤMod fld LMod
16 zringnrg ring NrmRing
17 10 15 16 3pm3.2i ℤMod fld NrmGrp ℤMod fld LMod ring NrmRing
18 simpl z x z
19 18 zcnd z x z
20 simpr z x x
21 20 recnd z x x
22 19 21 absmuld z x z x = z x
23 subrgsubg SubRing fld SubGrp fld
24 3 23 ax-mp SubGrp fld
25 eqid fld = fld
26 eqid fld = fld
27 7 26 zlmvsca fld = ℤMod fld
28 27 eqcomi ℤMod fld = fld
29 25 4 28 subgmulg SubGrp fld z x z fld x = z ℤMod fld x
30 24 29 mp3an1 z x z fld x = z ℤMod fld x
31 cnfldmulg z x z fld x = z x
32 21 31 syldan z x z fld x = z x
33 30 32 eqtr3d z x z ℤMod fld x = z x
34 33 fveq2d z x abs z ℤMod fld x = abs z x
35 zre z z
36 remulcl z x z x
37 fvres z x abs z x = z x
38 36 37 syl z x abs z x = z x
39 35 38 sylan z x abs z x = z x
40 34 39 eqtrd z x abs z ℤMod fld x = z x
41 fvres z abs z = z
42 fvres x abs x = x
43 41 42 oveqan12d z x abs z abs x = z x
44 22 40 43 3eqtr4d z x abs z ℤMod fld x = abs z abs x
45 44 rgen2 z x abs z ℤMod fld x = abs z abs x
46 rebase = Base fld
47 7 46 zlmbas = Base ℤMod fld
48 recusp fld CUnifSp
49 48 elexi fld V
50 cnring fld Ring
51 ringmnd fld Ring fld Mnd
52 50 51 ax-mp fld Mnd
53 0re 0
54 ax-resscn
55 cnfldbas = Base fld
56 cnfld0 0 = 0 fld
57 cnfldnm abs = norm fld
58 4 55 56 57 ressnm fld Mnd 0 abs = norm fld
59 52 53 54 58 mp3an abs = norm fld
60 7 59 zlmnm fld V abs = norm ℤMod fld
61 49 60 ax-mp abs = norm ℤMod fld
62 eqid ℤMod fld = ℤMod fld
63 7 zlmsca fld V ring = Scalar ℤMod fld
64 49 63 ax-mp ring = Scalar ℤMod fld
65 zringbas = Base ring
66 zringnm norm ring = abs
67 66 eqcomi abs = norm ring
68 47 61 62 64 65 67 isnlm ℤMod fld NrmMod ℤMod fld NrmGrp ℤMod fld LMod ring NrmRing z x abs z ℤMod fld x = abs z abs x
69 17 45 68 mpbir2an ℤMod fld NrmMod