Metamath Proof Explorer


Theorem recusp

Description: The real numbers form a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion recusp fld CUnifSp

Proof

Step Hyp Ref Expression
1 0re 0
2 1 ne0ii
3 recms fld CMetSp
4 reust UnifSt fld = metUnif dist fld 2
5 rebase = Base fld
6 eqid dist fld 2 = dist fld 2
7 eqid UnifSt fld = UnifSt fld
8 5 6 7 cmetcusp1 fld CMetSp UnifSt fld = metUnif dist fld 2 fld CUnifSp
9 2 3 4 8 mp3an fld CUnifSp