Metamath Proof Explorer


Theorem recms

Description: The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion recms fld CMetSp

Proof

Step Hyp Ref Expression
1 eqid TopOpen fld = TopOpen fld
2 1 recld2 Clsd TopOpen fld
3 cncms fld CMetSp
4 ax-resscn
5 df-refld fld = fld 𝑠
6 cnfldbas = Base fld
7 5 6 1 cmsss fld CMetSp fld CMetSp Clsd TopOpen fld
8 3 4 7 mp2an fld CMetSp Clsd TopOpen fld
9 2 8 mpbir fld CMetSp