Description: The real numbers are a closed set in the topology on CC . (Contributed by Mario Carneiro, 17-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | recld2.1 | |
|
Assertion | recld2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld2.1 | |
|
2 | difss | |
|
3 | eldifi | |
|
4 | 3 | imcld | |
5 | 4 | recnd | |
6 | eldifn | |
|
7 | reim0b | |
|
8 | 3 7 | syl | |
9 | 8 | necon3bbid | |
10 | 6 9 | mpbid | |
11 | 5 10 | absrpcld | |
12 | cnxmet | |
|
13 | 5 | abscld | |
14 | 13 | rexrd | |
15 | elbl | |
|
16 | 12 3 14 15 | mp3an2i | |
17 | simprl | |
|
18 | 3 | adantr | |
19 | simpr | |
|
20 | 19 | recnd | |
21 | eqid | |
|
22 | 21 | cnmetdval | |
23 | 18 20 22 | syl2anc | |
24 | 5 | adantr | |
25 | 24 | abscld | |
26 | 18 20 | subcld | |
27 | 26 | abscld | |
28 | 18 20 | imsubd | |
29 | reim0 | |
|
30 | 29 | adantl | |
31 | 30 | oveq2d | |
32 | 24 | subid1d | |
33 | 28 31 32 | 3eqtrd | |
34 | 33 | fveq2d | |
35 | absimle | |
|
36 | 26 35 | syl | |
37 | 34 36 | eqbrtrrd | |
38 | 25 27 37 | lensymd | |
39 | 23 38 | eqnbrtrd | |
40 | 39 | ex | |
41 | 40 | con2d | |
42 | 41 | adantr | |
43 | 42 | impr | |
44 | 17 43 | eldifd | |
45 | 44 | ex | |
46 | 16 45 | sylbid | |
47 | 46 | ssrdv | |
48 | oveq2 | |
|
49 | 48 | sseq1d | |
50 | 49 | rspcev | |
51 | 11 47 50 | syl2anc | |
52 | 51 | rgen | |
53 | 1 | cnfldtopn | |
54 | 53 | elmopn2 | |
55 | 12 54 | ax-mp | |
56 | 2 52 55 | mpbir2an | |
57 | 1 | cnfldtop | |
58 | ax-resscn | |
|
59 | 53 | mopnuni | |
60 | 12 59 | ax-mp | |
61 | 60 | iscld2 | |
62 | 57 58 61 | mp2an | |
63 | 56 62 | mpbir | |