Metamath Proof Explorer


Theorem recld2

Description: The real numbers are a closed set in the topology on CC . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypothesis recld2.1 J=TopOpenfld
Assertion recld2 ClsdJ

Proof

Step Hyp Ref Expression
1 recld2.1 J=TopOpenfld
2 difss
3 eldifi xx
4 3 imcld xx
5 4 recnd xx
6 eldifn x¬x
7 reim0b xxx=0
8 3 7 syl xxx=0
9 8 necon3bbid x¬xx0
10 6 9 mpbid xx0
11 5 10 absrpcld xx+
12 cnxmet abs∞Met
13 5 abscld xx
14 13 rexrd xx*
15 elbl abs∞Metxx*yxballabsxyxabsy<x
16 12 3 14 15 mp3an2i xyxballabsxyxabsy<x
17 simprl xyxabsy<xy
18 3 adantr xyx
19 simpr xyy
20 19 recnd xyy
21 eqid abs=abs
22 21 cnmetdval xyxabsy=xy
23 18 20 22 syl2anc xyxabsy=xy
24 5 adantr xyx
25 24 abscld xyx
26 18 20 subcld xyxy
27 26 abscld xyxy
28 18 20 imsubd xyxy=xy
29 reim0 yy=0
30 29 adantl xyy=0
31 30 oveq2d xyxy=x0
32 24 subid1d xyx0=x
33 28 31 32 3eqtrd xyxy=x
34 33 fveq2d xyxy=x
35 absimle xyxyxy
36 26 35 syl xyxyxy
37 34 36 eqbrtrrd xyxxy
38 25 27 37 lensymd xy¬xy<x
39 23 38 eqnbrtrd xy¬xabsy<x
40 39 ex xy¬xabsy<x
41 40 con2d xxabsy<x¬y
42 41 adantr xyxabsy<x¬y
43 42 impr xyxabsy<x¬y
44 17 43 eldifd xyxabsy<xy
45 44 ex xyxabsy<xy
46 16 45 sylbid xyxballabsxy
47 46 ssrdv xxballabsx
48 oveq2 y=xxballabsy=xballabsx
49 48 sseq1d y=xxballabsyxballabsx
50 49 rspcev x+xballabsxy+xballabsy
51 11 47 50 syl2anc xy+xballabsy
52 51 rgen xy+xballabsy
53 1 cnfldtopn J=MetOpenabs
54 53 elmopn2 abs∞MetJxy+xballabsy
55 12 54 ax-mp Jxy+xballabsy
56 2 52 55 mpbir2an J
57 1 cnfldtop JTop
58 ax-resscn
59 53 mopnuni abs∞Met=J
60 12 59 ax-mp =J
61 60 iscld2 JTopClsdJJ
62 57 58 61 mp2an ClsdJJ
63 56 62 mpbir ClsdJ