Metamath Proof Explorer


Theorem rexrd

Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rexrd.1 φA
Assertion rexrd φA*

Proof

Step Hyp Ref Expression
1 rexrd.1 φA
2 ressxr *
3 2 1 sselid φA*