Metamath Proof Explorer


Theorem elmopn2

Description: A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 J=MetOpenD
Assertion elmopn2 D∞MetXAJAXxAy+xballDyA

Proof

Step Hyp Ref Expression
1 mopnval.1 J=MetOpenD
2 1 elmopn D∞MetXAJAXxAzranballDxzzA
3 ssel2 AXxAxX
4 blssex D∞MetXxXzranballDxzzAy+xballDyA
5 3 4 sylan2 D∞MetXAXxAzranballDxzzAy+xballDyA
6 5 anassrs D∞MetXAXxAzranballDxzzAy+xballDyA
7 6 ralbidva D∞MetXAXxAzranballDxzzAxAy+xballDyA
8 7 pm5.32da D∞MetXAXxAzranballDxzzAAXxAy+xballDyA
9 2 8 bitrd D∞MetXAJAXxAy+xballDyA