Metamath Proof Explorer


Theorem mopnss

Description: An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006)

Ref Expression
Hypothesis mopnval.1 J=MetOpenD
Assertion mopnss D∞MetXAJAX

Proof

Step Hyp Ref Expression
1 mopnval.1 J=MetOpenD
2 1 mopntopon D∞MetXJTopOnX
3 toponss JTopOnXAJAX
4 2 3 sylan D∞MetXAJAX