Metamath Proof Explorer


Theorem mopnss

Description: An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006)

Ref Expression
Hypothesis mopnval.1 ⊒ 𝐽 = ( MetOpen β€˜ 𝐷 )
Assertion mopnss ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) β†’ 𝐴 βŠ† 𝑋 )

Proof

Step Hyp Ref Expression
1 mopnval.1 ⊒ 𝐽 = ( MetOpen β€˜ 𝐷 )
2 1 mopntopon ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) )
3 toponss ⊒ ( ( 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) β†’ 𝐴 βŠ† 𝑋 )
4 2 3 sylan ⊒ ( ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) β†’ 𝐴 βŠ† 𝑋 )