Metamath Proof Explorer


Theorem recms

Description: The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion recms
|- RRfld e. CMetSp

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
2 1 recld2
 |-  RR e. ( Clsd ` ( TopOpen ` CCfld ) )
3 cncms
 |-  CCfld e. CMetSp
4 ax-resscn
 |-  RR C_ CC
5 df-refld
 |-  RRfld = ( CCfld |`s RR )
6 cnfldbas
 |-  CC = ( Base ` CCfld )
7 5 6 1 cmsss
 |-  ( ( CCfld e. CMetSp /\ RR C_ CC ) -> ( RRfld e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) )
8 3 4 7 mp2an
 |-  ( RRfld e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) )
9 2 8 mpbir
 |-  RRfld e. CMetSp