Description: The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | recms | |- RRfld e. CMetSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
2 | 1 | recld2 | |- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
3 | cncms | |- CCfld e. CMetSp |
|
4 | ax-resscn | |- RR C_ CC |
|
5 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
6 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
7 | 5 6 1 | cmsss | |- ( ( CCfld e. CMetSp /\ RR C_ CC ) -> ( RRfld e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) |
8 | 3 4 7 | mp2an | |- ( RRfld e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
9 | 2 8 | mpbir | |- RRfld e. CMetSp |