Metamath Proof Explorer


Theorem recms

Description: The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion recms fld ∈ CMetSp

Proof

Step Hyp Ref Expression
1 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
2 1 recld2 ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) )
3 cncms fld ∈ CMetSp
4 ax-resscn ℝ ⊆ ℂ
5 df-refld fld = ( ℂflds ℝ )
6 cnfldbas ℂ = ( Base ‘ ℂfld )
7 5 6 1 cmsss ( ( ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ ) → ( ℝfld ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) )
8 3 4 7 mp2an ( ℝfld ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) )
9 2 8 mpbir fld ∈ CMetSp