Description: The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | recms | ⊢ ℝfld ∈ CMetSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
2 | 1 | recld2 | ⊢ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
3 | cncms | ⊢ ℂfld ∈ CMetSp | |
4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
5 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
6 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
7 | 5 6 1 | cmsss | ⊢ ( ( ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ ) → ( ℝfld ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) |
8 | 3 4 7 | mp2an | ⊢ ( ℝfld ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
9 | 2 8 | mpbir | ⊢ ℝfld ∈ CMetSp |