| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 2 |
1
|
fveq2i |
⊢ ( UnifSt ‘ ℝfld ) = ( UnifSt ‘ ( ℂfld ↾s ℝ ) ) |
| 3 |
|
reex |
⊢ ℝ ∈ V |
| 4 |
|
ressuss |
⊢ ( ℝ ∈ V → ( UnifSt ‘ ( ℂfld ↾s ℝ ) ) = ( ( UnifSt ‘ ℂfld ) ↾t ( ℝ × ℝ ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( UnifSt ‘ ( ℂfld ↾s ℝ ) ) = ( ( UnifSt ‘ ℂfld ) ↾t ( ℝ × ℝ ) ) |
| 6 |
|
eqid |
⊢ ( UnifSt ‘ ℂfld ) = ( UnifSt ‘ ℂfld ) |
| 7 |
6
|
cnflduss |
⊢ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) |
| 8 |
7
|
oveq1i |
⊢ ( ( UnifSt ‘ ℂfld ) ↾t ( ℝ × ℝ ) ) = ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℝ × ℝ ) ) |
| 9 |
2 5 8
|
3eqtri |
⊢ ( UnifSt ‘ ℝfld ) = ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℝ × ℝ ) ) |
| 10 |
|
0re |
⊢ 0 ∈ ℝ |
| 11 |
10
|
ne0ii |
⊢ ℝ ≠ ∅ |
| 12 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 13 |
|
xmetpsmet |
⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) |
| 15 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 16 |
|
restmetu |
⊢ ( ( ℝ ≠ ∅ ∧ ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) ∧ ℝ ⊆ ℂ ) → ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℝ × ℝ ) ) = ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ) |
| 17 |
11 14 15 16
|
mp3an |
⊢ ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℝ × ℝ ) ) = ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 18 |
|
reds |
⊢ ( abs ∘ − ) = ( dist ‘ ℝfld ) |
| 19 |
18
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) |
| 20 |
19
|
fveq2i |
⊢ ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) |
| 21 |
9 17 20
|
3eqtri |
⊢ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) |