Metamath Proof Explorer


Theorem reust

Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018)

Ref Expression
Assertion reust ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) )

Proof

Step Hyp Ref Expression
1 df-refld fld = ( ℂflds ℝ )
2 1 fveq2i ( UnifSt ‘ ℝfld ) = ( UnifSt ‘ ( ℂflds ℝ ) )
3 reex ℝ ∈ V
4 ressuss ( ℝ ∈ V → ( UnifSt ‘ ( ℂflds ℝ ) ) = ( ( UnifSt ‘ ℂfld ) ↾t ( ℝ × ℝ ) ) )
5 3 4 ax-mp ( UnifSt ‘ ( ℂflds ℝ ) ) = ( ( UnifSt ‘ ℂfld ) ↾t ( ℝ × ℝ ) )
6 eqid ( UnifSt ‘ ℂfld ) = ( UnifSt ‘ ℂfld )
7 6 cnflduss ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) )
8 7 oveq1i ( ( UnifSt ‘ ℂfld ) ↾t ( ℝ × ℝ ) ) = ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℝ × ℝ ) )
9 2 5 8 3eqtri ( UnifSt ‘ ℝfld ) = ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℝ × ℝ ) )
10 0re 0 ∈ ℝ
11 10 ne0ii ℝ ≠ ∅
12 cnxmet ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ )
13 xmetpsmet ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) )
14 12 13 ax-mp ( abs ∘ − ) ∈ ( PsMet ‘ ℂ )
15 ax-resscn ℝ ⊆ ℂ
16 restmetu ( ( ℝ ≠ ∅ ∧ ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) ∧ ℝ ⊆ ℂ ) → ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℝ × ℝ ) ) = ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) )
17 11 14 15 16 mp3an ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℝ × ℝ ) ) = ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) )
18 reds ( abs ∘ − ) = ( dist ‘ ℝfld )
19 18 reseq1i ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) )
20 19 fveq2i ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) )
21 9 17 20 3eqtri ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) )