Description: The real numbers form a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | recusp | ⊢ ℝfld ∈ CUnifSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | ⊢ 0 ∈ ℝ | |
2 | 1 | ne0ii | ⊢ ℝ ≠ ∅ |
3 | recms | ⊢ ℝfld ∈ CMetSp | |
4 | reust | ⊢ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) | |
5 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
6 | eqid | ⊢ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) | |
7 | eqid | ⊢ ( UnifSt ‘ ℝfld ) = ( UnifSt ‘ ℝfld ) | |
8 | 5 6 7 | cmetcusp1 | ⊢ ( ( ℝ ≠ ∅ ∧ ℝfld ∈ CMetSp ∧ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) ) → ℝfld ∈ CUnifSp ) |
9 | 2 3 4 8 | mp3an | ⊢ ℝfld ∈ CUnifSp |