Metamath Proof Explorer


Theorem recusp

Description: The real numbers form a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion recusp fld ∈ CUnifSp

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 1 ne0ii ℝ ≠ ∅
3 recms fld ∈ CMetSp
4 reust ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) )
5 rebase ℝ = ( Base ‘ ℝfld )
6 eqid ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) )
7 eqid ( UnifSt ‘ ℝfld ) = ( UnifSt ‘ ℝfld )
8 5 6 7 cmetcusp1 ( ( ℝ ≠ ∅ ∧ ℝfld ∈ CMetSp ∧ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) ) → ℝfld ∈ CUnifSp )
9 2 3 4 8 mp3an fld ∈ CUnifSp