Description: The real numbers form a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recusp | |- RRfld e. CUnifSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | 1 | ne0ii | |- RR =/= (/) |
| 3 | recms | |- RRfld e. CMetSp |
|
| 4 | reust | |- ( UnifSt ` RRfld ) = ( metUnif ` ( ( dist ` RRfld ) |` ( RR X. RR ) ) ) |
|
| 5 | rebase | |- RR = ( Base ` RRfld ) |
|
| 6 | eqid | |- ( ( dist ` RRfld ) |` ( RR X. RR ) ) = ( ( dist ` RRfld ) |` ( RR X. RR ) ) |
|
| 7 | eqid | |- ( UnifSt ` RRfld ) = ( UnifSt ` RRfld ) |
|
| 8 | 5 6 7 | cmetcusp1 | |- ( ( RR =/= (/) /\ RRfld e. CMetSp /\ ( UnifSt ` RRfld ) = ( metUnif ` ( ( dist ` RRfld ) |` ( RR X. RR ) ) ) ) -> RRfld e. CUnifSp ) |
| 9 | 2 3 4 8 | mp3an | |- RRfld e. CUnifSp |