| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmetcusp1.x |  |-  X = ( Base ` F ) | 
						
							| 2 |  | cmetcusp1.d |  |-  D = ( ( dist ` F ) |` ( X X. X ) ) | 
						
							| 3 |  | cmetcusp1.u |  |-  U = ( UnifSt ` F ) | 
						
							| 4 |  | cmsms |  |-  ( F e. CMetSp -> F e. MetSp ) | 
						
							| 5 |  | msxms |  |-  ( F e. MetSp -> F e. *MetSp ) | 
						
							| 6 | 4 5 | syl |  |-  ( F e. CMetSp -> F e. *MetSp ) | 
						
							| 7 | 1 2 3 | xmsusp |  |-  ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> F e. UnifSp ) | 
						
							| 8 | 6 7 | syl3an2 |  |-  ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> F e. UnifSp ) | 
						
							| 9 |  | simpl3 |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> U = ( metUnif ` D ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( CauFilU ` U ) = ( CauFilU ` ( metUnif ` D ) ) ) | 
						
							| 11 | 10 | eleq2d |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` U ) <-> c e. ( CauFilU ` ( metUnif ` D ) ) ) ) | 
						
							| 12 |  | simpl1 |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> X =/= (/) ) | 
						
							| 13 | 1 2 | cmscmet |  |-  ( F e. CMetSp -> D e. ( CMet ` X ) ) | 
						
							| 14 |  | cmetmet |  |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) | 
						
							| 15 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 16 | 13 14 15 | 3syl |  |-  ( F e. CMetSp -> D e. ( *Met ` X ) ) | 
						
							| 17 | 16 | 3ad2ant2 |  |-  ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> D e. ( *Met ` X ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> D e. ( *Met ` X ) ) | 
						
							| 19 |  | simpr |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> c e. ( Fil ` X ) ) | 
						
							| 20 |  | cfilucfil4 |  |-  ( ( X =/= (/) /\ D e. ( *Met ` X ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` ( metUnif ` D ) ) <-> c e. ( CauFil ` D ) ) ) | 
						
							| 21 | 12 18 19 20 | syl3anc |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` ( metUnif ` D ) ) <-> c e. ( CauFil ` D ) ) ) | 
						
							| 22 | 11 21 | bitrd |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` U ) <-> c e. ( CauFil ` D ) ) ) | 
						
							| 23 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 24 | 23 | iscmet |  |-  ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) ) | 
						
							| 25 | 24 | simprbi |  |-  ( D e. ( CMet ` X ) -> A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) | 
						
							| 26 | 13 25 | syl |  |-  ( F e. CMetSp -> A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) | 
						
							| 27 |  | eqid |  |-  ( TopOpen ` F ) = ( TopOpen ` F ) | 
						
							| 28 | 27 1 2 | xmstopn |  |-  ( F e. *MetSp -> ( TopOpen ` F ) = ( MetOpen ` D ) ) | 
						
							| 29 | 6 28 | syl |  |-  ( F e. CMetSp -> ( TopOpen ` F ) = ( MetOpen ` D ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( F e. CMetSp -> ( ( TopOpen ` F ) fLim c ) = ( ( MetOpen ` D ) fLim c ) ) | 
						
							| 31 | 30 | neeq1d |  |-  ( F e. CMetSp -> ( ( ( TopOpen ` F ) fLim c ) =/= (/) <-> ( ( MetOpen ` D ) fLim c ) =/= (/) ) ) | 
						
							| 32 | 31 | ralbidv |  |-  ( F e. CMetSp -> ( A. c e. ( CauFil ` D ) ( ( TopOpen ` F ) fLim c ) =/= (/) <-> A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) ) | 
						
							| 33 | 26 32 | mpbird |  |-  ( F e. CMetSp -> A. c e. ( CauFil ` D ) ( ( TopOpen ` F ) fLim c ) =/= (/) ) | 
						
							| 34 | 33 | r19.21bi |  |-  ( ( F e. CMetSp /\ c e. ( CauFil ` D ) ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) | 
						
							| 35 | 34 | ex |  |-  ( F e. CMetSp -> ( c e. ( CauFil ` D ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) | 
						
							| 36 | 35 | 3ad2ant2 |  |-  ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> ( c e. ( CauFil ` D ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFil ` D ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) | 
						
							| 38 | 22 37 | sylbid |  |-  ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` U ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) | 
						
							| 39 | 38 | ralrimiva |  |-  ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> A. c e. ( Fil ` X ) ( c e. ( CauFilU ` U ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) | 
						
							| 40 | 1 3 27 | iscusp2 |  |-  ( F e. CUnifSp <-> ( F e. UnifSp /\ A. c e. ( Fil ` X ) ( c e. ( CauFilU ` U ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) ) | 
						
							| 41 | 8 39 40 | sylanbrc |  |-  ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> F e. CUnifSp ) |