| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet.1 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | elfvex |  |-  ( D e. ( CMet ` X ) -> X e. _V ) | 
						
							| 3 |  | elfvex |  |-  ( D e. ( Met ` X ) -> X e. _V ) | 
						
							| 4 | 3 | adantr |  |-  ( ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) -> X e. _V ) | 
						
							| 5 |  | fveq2 |  |-  ( x = X -> ( Met ` x ) = ( Met ` X ) ) | 
						
							| 6 | 5 | rabeqdv |  |-  ( x = X -> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } = { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) | 
						
							| 7 |  | df-cmet |  |-  CMet = ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) | 
						
							| 8 |  | fvex |  |-  ( Met ` X ) e. _V | 
						
							| 9 | 8 | rabex |  |-  { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } e. _V | 
						
							| 10 | 6 7 9 | fvmpt |  |-  ( X e. _V -> ( CMet ` X ) = { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) | 
						
							| 11 | 10 | eleq2d |  |-  ( X e. _V -> ( D e. ( CMet ` X ) <-> D e. { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) ) | 
						
							| 12 |  | fveq2 |  |-  ( d = D -> ( CauFil ` d ) = ( CauFil ` D ) ) | 
						
							| 13 |  | fveq2 |  |-  ( d = D -> ( MetOpen ` d ) = ( MetOpen ` D ) ) | 
						
							| 14 | 13 1 | eqtr4di |  |-  ( d = D -> ( MetOpen ` d ) = J ) | 
						
							| 15 | 14 | oveq1d |  |-  ( d = D -> ( ( MetOpen ` d ) fLim f ) = ( J fLim f ) ) | 
						
							| 16 | 15 | neeq1d |  |-  ( d = D -> ( ( ( MetOpen ` d ) fLim f ) =/= (/) <-> ( J fLim f ) =/= (/) ) ) | 
						
							| 17 | 12 16 | raleqbidv |  |-  ( d = D -> ( A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) <-> A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) | 
						
							| 18 | 17 | elrab |  |-  ( D e. { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) | 
						
							| 19 | 11 18 | bitrdi |  |-  ( X e. _V -> ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) ) | 
						
							| 20 | 2 4 19 | pm5.21nii |  |-  ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |