| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet.1 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 | 1 | iscmet |  |-  ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) | 
						
							| 3 | 2 | simprbi |  |-  ( D e. ( CMet ` X ) -> A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) | 
						
							| 4 |  | oveq2 |  |-  ( f = F -> ( J fLim f ) = ( J fLim F ) ) | 
						
							| 5 | 4 | neeq1d |  |-  ( f = F -> ( ( J fLim f ) =/= (/) <-> ( J fLim F ) =/= (/) ) ) | 
						
							| 6 | 5 | rspccva |  |-  ( ( A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) /\ F e. ( CauFil ` D ) ) -> ( J fLim F ) =/= (/) ) | 
						
							| 7 | 3 6 | sylan |  |-  ( ( D e. ( CMet ` X ) /\ F e. ( CauFil ` D ) ) -> ( J fLim F ) =/= (/) ) |