Metamath Proof Explorer


Theorem iscmet

Description: The property " D is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis iscmet.1 J = MetOpen D
Assertion iscmet D CMet X D Met X f CauFil D J fLim f

Proof

Step Hyp Ref Expression
1 iscmet.1 J = MetOpen D
2 elfvex D CMet X X V
3 elfvex D Met X X V
4 3 adantr D Met X f CauFil D J fLim f X V
5 fveq2 x = X Met x = Met X
6 5 rabeqdv x = X d Met x | f CauFil d MetOpen d fLim f = d Met X | f CauFil d MetOpen d fLim f
7 df-cmet CMet = x V d Met x | f CauFil d MetOpen d fLim f
8 fvex Met X V
9 8 rabex d Met X | f CauFil d MetOpen d fLim f V
10 6 7 9 fvmpt X V CMet X = d Met X | f CauFil d MetOpen d fLim f
11 10 eleq2d X V D CMet X D d Met X | f CauFil d MetOpen d fLim f
12 fveq2 d = D CauFil d = CauFil D
13 fveq2 d = D MetOpen d = MetOpen D
14 13 1 eqtr4di d = D MetOpen d = J
15 14 oveq1d d = D MetOpen d fLim f = J fLim f
16 15 neeq1d d = D MetOpen d fLim f J fLim f
17 12 16 raleqbidv d = D f CauFil d MetOpen d fLim f f CauFil D J fLim f
18 17 elrab D d Met X | f CauFil d MetOpen d fLim f D Met X f CauFil D J fLim f
19 11 18 bitrdi X V D CMet X D Met X f CauFil D J fLim f
20 2 4 19 pm5.21nii D CMet X D Met X f CauFil D J fLim f