Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmsms | |- ( G e. CMetSp -> G e. MetSp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( Base ` G ) = ( Base ` G ) | |
| 2 | eqid | |- ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) = ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) | |
| 3 | 1 2 | iscms | |- ( G e. CMetSp <-> ( G e. MetSp /\ ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) e. ( CMet ` ( Base ` G ) ) ) ) | 
| 4 | 3 | simplbi | |- ( G e. CMetSp -> G e. MetSp ) |