Metamath Proof Explorer


Theorem cmsms

Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cmsms GCMetSpGMetSp

Proof

Step Hyp Ref Expression
1 eqid BaseG=BaseG
2 eqid distGBaseG×BaseG=distGBaseG×BaseG
3 1 2 iscms GCMetSpGMetSpdistGBaseG×BaseGCMetBaseG
4 3 simplbi GCMetSpGMetSp