Metamath Proof Explorer


Theorem cmspropd

Description: Property deduction for a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses cmspropd.1 φB=BaseK
cmspropd.2 φB=BaseL
cmspropd.3 φdistKB×B=distLB×B
cmspropd.4 φTopOpenK=TopOpenL
Assertion cmspropd φKCMetSpLCMetSp

Proof

Step Hyp Ref Expression
1 cmspropd.1 φB=BaseK
2 cmspropd.2 φB=BaseL
3 cmspropd.3 φdistKB×B=distLB×B
4 cmspropd.4 φTopOpenK=TopOpenL
5 1 2 3 4 mspropd φKMetSpLMetSp
6 1 sqxpeqd φB×B=BaseK×BaseK
7 6 reseq2d φdistKB×B=distKBaseK×BaseK
8 3 7 eqtr3d φdistLB×B=distKBaseK×BaseK
9 2 sqxpeqd φB×B=BaseL×BaseL
10 9 reseq2d φdistLB×B=distLBaseL×BaseL
11 8 10 eqtr3d φdistKBaseK×BaseK=distLBaseL×BaseL
12 1 2 eqtr3d φBaseK=BaseL
13 12 fveq2d φCMetBaseK=CMetBaseL
14 11 13 eleq12d φdistKBaseK×BaseKCMetBaseKdistLBaseL×BaseLCMetBaseL
15 5 14 anbi12d φKMetSpdistKBaseK×BaseKCMetBaseKLMetSpdistLBaseL×BaseLCMetBaseL
16 eqid BaseK=BaseK
17 eqid distKBaseK×BaseK=distKBaseK×BaseK
18 16 17 iscms KCMetSpKMetSpdistKBaseK×BaseKCMetBaseK
19 eqid BaseL=BaseL
20 eqid distLBaseL×BaseL=distLBaseL×BaseL
21 19 20 iscms LCMetSpLMetSpdistLBaseL×BaseLCMetBaseL
22 15 18 21 3bitr4g φKCMetSpLCMetSp