| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmsss.h |  | 
						
							| 2 |  | cmsss.x |  | 
						
							| 3 |  | cmsss.j |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 2 4 | msmet |  | 
						
							| 6 | 5 | 3ad2ant1 |  | 
						
							| 7 |  | xpss12 |  | 
						
							| 8 | 7 | anidms |  | 
						
							| 9 | 8 | 3ad2ant2 |  | 
						
							| 10 | 9 | resabs1d |  | 
						
							| 11 | 2 | sseq2i |  | 
						
							| 12 |  | fvex |  | 
						
							| 13 | 12 | ssex |  | 
						
							| 14 | 11 13 | sylbi |  | 
						
							| 15 | 14 | 3ad2ant2 |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 1 16 | ressds |  | 
						
							| 18 | 15 17 | syl |  | 
						
							| 19 | 18 | reseq1d |  | 
						
							| 20 | 10 19 | eqtrd |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 21 22 | iscms |  | 
						
							| 24 | 1 2 | ressbas2 |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 25 | eqcomd |  | 
						
							| 27 | 26 | sqxpeqd |  | 
						
							| 28 | 27 | reseq2d |  | 
						
							| 29 | 26 | fveq2d |  | 
						
							| 30 | 28 29 | eleq12d |  | 
						
							| 31 | 30 | biimpd |  | 
						
							| 32 | 31 | expimpd |  | 
						
							| 33 | 23 32 | biimtrid |  | 
						
							| 34 | 33 | imp |  | 
						
							| 35 | 34 | 3adant1 |  | 
						
							| 36 | 20 35 | eqeltrd |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 37 | metsscmetcld |  | 
						
							| 39 | 6 36 38 | syl2anc |  | 
						
							| 40 | 3 2 4 | mstopn |  | 
						
							| 41 | 40 | 3ad2ant1 |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 | 39 42 | eleqtrrd |  |