Metamath Proof Explorer


Theorem cmssmscld

Description: The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022)

Ref Expression
Hypotheses cmsss.h K = M 𝑠 A
cmsss.x X = Base M
cmsss.j J = TopOpen M
Assertion cmssmscld M MetSp A X K CMetSp A Clsd J

Proof

Step Hyp Ref Expression
1 cmsss.h K = M 𝑠 A
2 cmsss.x X = Base M
3 cmsss.j J = TopOpen M
4 eqid dist M X × X = dist M X × X
5 2 4 msmet M MetSp dist M X × X Met X
6 5 3ad2ant1 M MetSp A X K CMetSp dist M X × X Met X
7 xpss12 A X A X A × A X × X
8 7 anidms A X A × A X × X
9 8 3ad2ant2 M MetSp A X K CMetSp A × A X × X
10 9 resabs1d M MetSp A X K CMetSp dist M X × X A × A = dist M A × A
11 2 sseq2i A X A Base M
12 fvex Base M V
13 12 ssex A Base M A V
14 11 13 sylbi A X A V
15 14 3ad2ant2 M MetSp A X K CMetSp A V
16 eqid dist M = dist M
17 1 16 ressds A V dist M = dist K
18 15 17 syl M MetSp A X K CMetSp dist M = dist K
19 18 reseq1d M MetSp A X K CMetSp dist M A × A = dist K A × A
20 10 19 eqtrd M MetSp A X K CMetSp dist M X × X A × A = dist K A × A
21 eqid Base K = Base K
22 eqid dist K Base K × Base K = dist K Base K × Base K
23 21 22 iscms K CMetSp K MetSp dist K Base K × Base K CMet Base K
24 1 2 ressbas2 A X A = Base K
25 24 adantr A X K MetSp A = Base K
26 25 eqcomd A X K MetSp Base K = A
27 26 sqxpeqd A X K MetSp Base K × Base K = A × A
28 27 reseq2d A X K MetSp dist K Base K × Base K = dist K A × A
29 26 fveq2d A X K MetSp CMet Base K = CMet A
30 28 29 eleq12d A X K MetSp dist K Base K × Base K CMet Base K dist K A × A CMet A
31 30 biimpd A X K MetSp dist K Base K × Base K CMet Base K dist K A × A CMet A
32 31 expimpd A X K MetSp dist K Base K × Base K CMet Base K dist K A × A CMet A
33 23 32 syl5bi A X K CMetSp dist K A × A CMet A
34 33 imp A X K CMetSp dist K A × A CMet A
35 34 3adant1 M MetSp A X K CMetSp dist K A × A CMet A
36 20 35 eqeltrd M MetSp A X K CMetSp dist M X × X A × A CMet A
37 eqid MetOpen dist M X × X = MetOpen dist M X × X
38 37 metsscmetcld dist M X × X Met X dist M X × X A × A CMet A A Clsd MetOpen dist M X × X
39 6 36 38 syl2anc M MetSp A X K CMetSp A Clsd MetOpen dist M X × X
40 3 2 4 mstopn M MetSp J = MetOpen dist M X × X
41 40 3ad2ant1 M MetSp A X K CMetSp J = MetOpen dist M X × X
42 41 fveq2d M MetSp A X K CMetSp Clsd J = Clsd MetOpen dist M X × X
43 39 42 eleqtrrd M MetSp A X K CMetSp A Clsd J