Step |
Hyp |
Ref |
Expression |
1 |
|
cmsss.h |
|
2 |
|
cmsss.x |
|
3 |
|
cmsss.j |
|
4 |
|
eqid |
|
5 |
2 4
|
msmet |
|
6 |
5
|
3ad2ant1 |
|
7 |
|
xpss12 |
|
8 |
7
|
anidms |
|
9 |
8
|
3ad2ant2 |
|
10 |
9
|
resabs1d |
|
11 |
2
|
sseq2i |
|
12 |
|
fvex |
|
13 |
12
|
ssex |
|
14 |
11 13
|
sylbi |
|
15 |
14
|
3ad2ant2 |
|
16 |
|
eqid |
|
17 |
1 16
|
ressds |
|
18 |
15 17
|
syl |
|
19 |
18
|
reseq1d |
|
20 |
10 19
|
eqtrd |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
21 22
|
iscms |
|
24 |
1 2
|
ressbas2 |
|
25 |
24
|
adantr |
|
26 |
25
|
eqcomd |
|
27 |
26
|
sqxpeqd |
|
28 |
27
|
reseq2d |
|
29 |
26
|
fveq2d |
|
30 |
28 29
|
eleq12d |
|
31 |
30
|
biimpd |
|
32 |
31
|
expimpd |
|
33 |
23 32
|
syl5bi |
|
34 |
33
|
imp |
|
35 |
34
|
3adant1 |
|
36 |
20 35
|
eqeltrd |
|
37 |
|
eqid |
|
38 |
37
|
metsscmetcld |
|
39 |
6 36 38
|
syl2anc |
|
40 |
3 2 4
|
mstopn |
|
41 |
40
|
3ad2ant1 |
|
42 |
41
|
fveq2d |
|
43 |
39 42
|
eleqtrrd |
|