| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmsss.h |  |-  K = ( M |`s A ) | 
						
							| 2 |  | cmsss.x |  |-  X = ( Base ` M ) | 
						
							| 3 |  | cmsss.j |  |-  J = ( TopOpen ` M ) | 
						
							| 4 |  | eqid |  |-  ( ( dist ` M ) |` ( X X. X ) ) = ( ( dist ` M ) |` ( X X. X ) ) | 
						
							| 5 | 2 4 | msmet |  |-  ( M e. MetSp -> ( ( dist ` M ) |` ( X X. X ) ) e. ( Met ` X ) ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( dist ` M ) |` ( X X. X ) ) e. ( Met ` X ) ) | 
						
							| 7 |  | xpss12 |  |-  ( ( A C_ X /\ A C_ X ) -> ( A X. A ) C_ ( X X. X ) ) | 
						
							| 8 | 7 | anidms |  |-  ( A C_ X -> ( A X. A ) C_ ( X X. X ) ) | 
						
							| 9 | 8 | 3ad2ant2 |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( A X. A ) C_ ( X X. X ) ) | 
						
							| 10 | 9 | resabs1d |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) = ( ( dist ` M ) |` ( A X. A ) ) ) | 
						
							| 11 | 2 | sseq2i |  |-  ( A C_ X <-> A C_ ( Base ` M ) ) | 
						
							| 12 |  | fvex |  |-  ( Base ` M ) e. _V | 
						
							| 13 | 12 | ssex |  |-  ( A C_ ( Base ` M ) -> A e. _V ) | 
						
							| 14 | 11 13 | sylbi |  |-  ( A C_ X -> A e. _V ) | 
						
							| 15 | 14 | 3ad2ant2 |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. _V ) | 
						
							| 16 |  | eqid |  |-  ( dist ` M ) = ( dist ` M ) | 
						
							| 17 | 1 16 | ressds |  |-  ( A e. _V -> ( dist ` M ) = ( dist ` K ) ) | 
						
							| 18 | 15 17 | syl |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( dist ` M ) = ( dist ` K ) ) | 
						
							| 19 | 18 | reseq1d |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( dist ` M ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( A X. A ) ) ) | 
						
							| 20 | 10 19 | eqtrd |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( A X. A ) ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 22 |  | eqid |  |-  ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) | 
						
							| 23 | 21 22 | iscms |  |-  ( K e. CMetSp <-> ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) ) | 
						
							| 24 | 1 2 | ressbas2 |  |-  ( A C_ X -> A = ( Base ` K ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( A C_ X /\ K e. MetSp ) -> A = ( Base ` K ) ) | 
						
							| 26 | 25 | eqcomd |  |-  ( ( A C_ X /\ K e. MetSp ) -> ( Base ` K ) = A ) | 
						
							| 27 | 26 | sqxpeqd |  |-  ( ( A C_ X /\ K e. MetSp ) -> ( ( Base ` K ) X. ( Base ` K ) ) = ( A X. A ) ) | 
						
							| 28 | 27 | reseq2d |  |-  ( ( A C_ X /\ K e. MetSp ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( A X. A ) ) ) | 
						
							| 29 | 26 | fveq2d |  |-  ( ( A C_ X /\ K e. MetSp ) -> ( CMet ` ( Base ` K ) ) = ( CMet ` A ) ) | 
						
							| 30 | 28 29 | eleq12d |  |-  ( ( A C_ X /\ K e. MetSp ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) <-> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) | 
						
							| 31 | 30 | biimpd |  |-  ( ( A C_ X /\ K e. MetSp ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) | 
						
							| 32 | 31 | expimpd |  |-  ( A C_ X -> ( ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) | 
						
							| 33 | 23 32 | biimtrid |  |-  ( A C_ X -> ( K e. CMetSp -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( A C_ X /\ K e. CMetSp ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) | 
						
							| 35 | 34 | 3adant1 |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) | 
						
							| 36 | 20 35 | eqeltrd |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) e. ( CMet ` A ) ) | 
						
							| 37 |  | eqid |  |-  ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) | 
						
							| 38 | 37 | metsscmetcld |  |-  ( ( ( ( dist ` M ) |` ( X X. X ) ) e. ( Met ` X ) /\ ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) e. ( CMet ` A ) ) -> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) | 
						
							| 39 | 6 36 38 | syl2anc |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) | 
						
							| 40 | 3 2 4 | mstopn |  |-  ( M e. MetSp -> J = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) | 
						
							| 41 | 40 | 3ad2ant1 |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> J = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) | 
						
							| 42 | 41 | fveq2d |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( Clsd ` J ) = ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) | 
						
							| 43 | 39 42 | eleqtrrd |  |-  ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. ( Clsd ` J ) ) |