| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmspropd.1 |  |-  ( ph -> B = ( Base ` K ) ) | 
						
							| 2 |  | cmspropd.2 |  |-  ( ph -> B = ( Base ` L ) ) | 
						
							| 3 |  | cmspropd.3 |  |-  ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) | 
						
							| 4 |  | cmspropd.4 |  |-  ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) | 
						
							| 5 | 1 2 3 4 | mspropd |  |-  ( ph -> ( K e. MetSp <-> L e. MetSp ) ) | 
						
							| 6 | 1 | sqxpeqd |  |-  ( ph -> ( B X. B ) = ( ( Base ` K ) X. ( Base ` K ) ) ) | 
						
							| 7 | 6 | reseq2d |  |-  ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) | 
						
							| 8 | 3 7 | eqtr3d |  |-  ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) | 
						
							| 9 | 2 | sqxpeqd |  |-  ( ph -> ( B X. B ) = ( ( Base ` L ) X. ( Base ` L ) ) ) | 
						
							| 10 | 9 | reseq2d |  |-  ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) | 
						
							| 11 | 8 10 | eqtr3d |  |-  ( ph -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) | 
						
							| 12 | 1 2 | eqtr3d |  |-  ( ph -> ( Base ` K ) = ( Base ` L ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ph -> ( CMet ` ( Base ` K ) ) = ( CMet ` ( Base ` L ) ) ) | 
						
							| 14 | 11 13 | eleq12d |  |-  ( ph -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) <-> ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) e. ( CMet ` ( Base ` L ) ) ) ) | 
						
							| 15 | 5 14 | anbi12d |  |-  ( ph -> ( ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) <-> ( L e. MetSp /\ ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) e. ( CMet ` ( Base ` L ) ) ) ) ) | 
						
							| 16 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 17 |  | eqid |  |-  ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) | 
						
							| 18 | 16 17 | iscms |  |-  ( K e. CMetSp <-> ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) ) | 
						
							| 19 |  | eqid |  |-  ( Base ` L ) = ( Base ` L ) | 
						
							| 20 |  | eqid |  |-  ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) | 
						
							| 21 | 19 20 | iscms |  |-  ( L e. CMetSp <-> ( L e. MetSp /\ ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) e. ( CMet ` ( Base ` L ) ) ) ) | 
						
							| 22 | 15 18 21 | 3bitr4g |  |-  ( ph -> ( K e. CMetSp <-> L e. CMetSp ) ) |