| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
| 2 |
1
|
fveq2i |
|- ( UnifSt ` RRfld ) = ( UnifSt ` ( CCfld |`s RR ) ) |
| 3 |
|
reex |
|- RR e. _V |
| 4 |
|
ressuss |
|- ( RR e. _V -> ( UnifSt ` ( CCfld |`s RR ) ) = ( ( UnifSt ` CCfld ) |`t ( RR X. RR ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( UnifSt ` ( CCfld |`s RR ) ) = ( ( UnifSt ` CCfld ) |`t ( RR X. RR ) ) |
| 6 |
|
eqid |
|- ( UnifSt ` CCfld ) = ( UnifSt ` CCfld ) |
| 7 |
6
|
cnflduss |
|- ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) |
| 8 |
7
|
oveq1i |
|- ( ( UnifSt ` CCfld ) |`t ( RR X. RR ) ) = ( ( metUnif ` ( abs o. - ) ) |`t ( RR X. RR ) ) |
| 9 |
2 5 8
|
3eqtri |
|- ( UnifSt ` RRfld ) = ( ( metUnif ` ( abs o. - ) ) |`t ( RR X. RR ) ) |
| 10 |
|
0re |
|- 0 e. RR |
| 11 |
10
|
ne0ii |
|- RR =/= (/) |
| 12 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 13 |
|
xmetpsmet |
|- ( ( abs o. - ) e. ( *Met ` CC ) -> ( abs o. - ) e. ( PsMet ` CC ) ) |
| 14 |
12 13
|
ax-mp |
|- ( abs o. - ) e. ( PsMet ` CC ) |
| 15 |
|
ax-resscn |
|- RR C_ CC |
| 16 |
|
restmetu |
|- ( ( RR =/= (/) /\ ( abs o. - ) e. ( PsMet ` CC ) /\ RR C_ CC ) -> ( ( metUnif ` ( abs o. - ) ) |`t ( RR X. RR ) ) = ( metUnif ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) |
| 17 |
11 14 15 16
|
mp3an |
|- ( ( metUnif ` ( abs o. - ) ) |`t ( RR X. RR ) ) = ( metUnif ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 18 |
|
reds |
|- ( abs o. - ) = ( dist ` RRfld ) |
| 19 |
18
|
reseq1i |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( dist ` RRfld ) |` ( RR X. RR ) ) |
| 20 |
19
|
fveq2i |
|- ( metUnif ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( metUnif ` ( ( dist ` RRfld ) |` ( RR X. RR ) ) ) |
| 21 |
9 17 20
|
3eqtri |
|- ( UnifSt ` RRfld ) = ( metUnif ` ( ( dist ` RRfld ) |` ( RR X. RR ) ) ) |