Step |
Hyp |
Ref |
Expression |
1 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
2 |
1
|
fveq2i |
|- ( UnifSt ` RRfld ) = ( UnifSt ` ( CCfld |`s RR ) ) |
3 |
|
reex |
|- RR e. _V |
4 |
|
ressuss |
|- ( RR e. _V -> ( UnifSt ` ( CCfld |`s RR ) ) = ( ( UnifSt ` CCfld ) |`t ( RR X. RR ) ) ) |
5 |
3 4
|
ax-mp |
|- ( UnifSt ` ( CCfld |`s RR ) ) = ( ( UnifSt ` CCfld ) |`t ( RR X. RR ) ) |
6 |
|
eqid |
|- ( UnifSt ` CCfld ) = ( UnifSt ` CCfld ) |
7 |
6
|
cnflduss |
|- ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) |
8 |
7
|
oveq1i |
|- ( ( UnifSt ` CCfld ) |`t ( RR X. RR ) ) = ( ( metUnif ` ( abs o. - ) ) |`t ( RR X. RR ) ) |
9 |
2 5 8
|
3eqtri |
|- ( UnifSt ` RRfld ) = ( ( metUnif ` ( abs o. - ) ) |`t ( RR X. RR ) ) |
10 |
|
0re |
|- 0 e. RR |
11 |
10
|
ne0ii |
|- RR =/= (/) |
12 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
13 |
|
xmetpsmet |
|- ( ( abs o. - ) e. ( *Met ` CC ) -> ( abs o. - ) e. ( PsMet ` CC ) ) |
14 |
12 13
|
ax-mp |
|- ( abs o. - ) e. ( PsMet ` CC ) |
15 |
|
ax-resscn |
|- RR C_ CC |
16 |
|
restmetu |
|- ( ( RR =/= (/) /\ ( abs o. - ) e. ( PsMet ` CC ) /\ RR C_ CC ) -> ( ( metUnif ` ( abs o. - ) ) |`t ( RR X. RR ) ) = ( metUnif ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) |
17 |
11 14 15 16
|
mp3an |
|- ( ( metUnif ` ( abs o. - ) ) |`t ( RR X. RR ) ) = ( metUnif ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
18 |
|
reds |
|- ( abs o. - ) = ( dist ` RRfld ) |
19 |
18
|
reseq1i |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( dist ` RRfld ) |` ( RR X. RR ) ) |
20 |
19
|
fveq2i |
|- ( metUnif ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( metUnif ` ( ( dist ` RRfld ) |` ( RR X. RR ) ) ) |
21 |
9 17 20
|
3eqtri |
|- ( UnifSt ` RRfld ) = ( metUnif ` ( ( dist ` RRfld ) |` ( RR X. RR ) ) ) |