| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ≠ ∅ ) |
| 2 |
|
psmetres2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) ) |
| 3 |
2
|
3adant1 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑏 ) ) |
| 5 |
4
|
imaeq2d |
⊢ ( 𝑎 = 𝑏 → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 6 |
5
|
cbvmptv |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) = ( 𝑏 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 7 |
6
|
rneqi |
⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 8 |
7
|
metustfbas |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝐴 × 𝐴 ) ) ) |
| 9 |
1 3 8
|
syl2anc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝐴 × 𝐴 ) ) ) |
| 10 |
|
fgval |
⊢ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝐴 × 𝐴 ) ) → ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
| 12 |
|
metuval |
⊢ ( ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) → ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) ) |
| 13 |
3 12
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) ) |
| 14 |
|
fvex |
⊢ ( metUnif ‘ 𝐷 ) ∈ V |
| 15 |
3
|
elfvexd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 16 |
15 15
|
xpexd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ∈ V ) |
| 17 |
|
restval |
⊢ ( ( ( metUnif ‘ 𝐷 ) ∈ V ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 18 |
14 16 17
|
sylancr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 19 |
|
inss2 |
⊢ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |
| 20 |
|
sseq1 |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑢 ⊆ ( 𝐴 × 𝐴 ) ↔ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 21 |
19 20
|
mpbiri |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝑢 ⊆ ( 𝐴 × 𝐴 ) ) |
| 22 |
|
vex |
⊢ 𝑢 ∈ V |
| 23 |
22
|
elpw |
⊢ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ↔ 𝑢 ⊆ ( 𝐴 × 𝐴 ) ) |
| 24 |
21 23
|
sylibr |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 25 |
24
|
rexlimivw |
⊢ ( ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 27 |
|
nfv |
⊢ Ⅎ 𝑎 ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 28 |
|
nfmpt1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 29 |
28
|
nfrn |
⊢ Ⅎ 𝑎 ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 30 |
29
|
nfcri |
⊢ Ⅎ 𝑎 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 31 |
27 30
|
nfan |
⊢ Ⅎ 𝑎 ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 32 |
|
nfv |
⊢ Ⅎ 𝑎 𝑤 ⊆ 𝑣 |
| 33 |
31 32
|
nfan |
⊢ Ⅎ 𝑎 ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) |
| 34 |
|
nfmpt1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 35 |
34
|
nfrn |
⊢ Ⅎ 𝑎 ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 36 |
|
nfcv |
⊢ Ⅎ 𝑎 𝒫 𝑢 |
| 37 |
35 36
|
nfin |
⊢ Ⅎ 𝑎 ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) |
| 38 |
|
nfcv |
⊢ Ⅎ 𝑎 ∅ |
| 39 |
37 38
|
nfne |
⊢ Ⅎ 𝑎 ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ |
| 40 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑎 ∈ ℝ+ ) |
| 41 |
|
ineq1 |
⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 43 |
|
simp2 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
| 44 |
|
psmetf |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 45 |
|
ffun |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → Fun 𝐷 ) |
| 46 |
|
respreima |
⊢ ( Fun 𝐷 → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 47 |
43 44 45 46
|
4syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 48 |
47
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 49 |
42 48
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 50 |
|
rspe |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 51 |
40 49 50
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 52 |
|
vex |
⊢ 𝑤 ∈ V |
| 53 |
52
|
inex1 |
⊢ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ V |
| 54 |
|
eqid |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 55 |
54
|
elrnmpt |
⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) |
| 56 |
53 55
|
ax-mp |
⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 57 |
51 56
|
sylibr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) |
| 58 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑤 ⊆ 𝑣 ) |
| 59 |
|
ssinss1 |
⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ) |
| 60 |
58 59
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ) |
| 61 |
|
inss2 |
⊢ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |
| 62 |
61
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) |
| 63 |
|
pweq |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝒫 𝑢 = 𝒫 ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 64 |
63
|
eleq2d |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 65 |
53
|
elpw |
⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 66 |
64 65
|
bitrdi |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 67 |
|
ssin |
⊢ ( ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 68 |
66 67
|
bitr4di |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) ) |
| 69 |
68
|
ad5antlr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) ) |
| 70 |
60 62 69
|
mpbir2and |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ) |
| 71 |
|
inelcm |
⊢ ( ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
| 72 |
57 70 71
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
| 73 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) → 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 74 |
|
eqid |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 75 |
74
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 76 |
75
|
elv |
⊢ ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 77 |
73 76
|
sylib |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 78 |
33 39 72 77
|
r19.29af2 |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
| 79 |
|
ssn0 |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≠ ∅ ) → 𝑋 ≠ ∅ ) |
| 80 |
79
|
ancoms |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 81 |
80
|
3adant2 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 82 |
|
metuel |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) ) ) |
| 83 |
81 43 82
|
syl2anc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) ) ) |
| 84 |
83
|
simplbda |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) |
| 85 |
84
|
adantr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) |
| 86 |
78 85
|
r19.29a |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
| 87 |
86
|
r19.29an |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
| 88 |
26 87
|
jca |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) |
| 89 |
|
simprl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 90 |
89
|
elpwid |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 ⊆ ( 𝐴 × 𝐴 ) ) |
| 91 |
|
simpl3 |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝐴 ⊆ 𝑋 ) |
| 92 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 93 |
91 91 92
|
syl2anc |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 94 |
90 93
|
sstrd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 ⊆ ( 𝑋 × 𝑋 ) ) |
| 95 |
|
difssd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 96 |
94 95
|
unssd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 97 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑏 ∈ ℝ+ ) |
| 98 |
|
eqidd |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 99 |
4
|
imaeq2d |
⊢ ( 𝑎 = 𝑏 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 100 |
99
|
rspceeqv |
⊢ ( ( 𝑏 ∈ ℝ+ ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 101 |
97 98 100
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 102 |
43
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
| 103 |
|
cnvexg |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) |
| 104 |
|
imaexg |
⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ V ) |
| 105 |
74
|
elrnmpt |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ V → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 106 |
102 103 104 105
|
4syl |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 107 |
101 106
|
mpbird |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 108 |
|
cnvimass |
⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ dom 𝐷 |
| 109 |
108 44
|
fssdm |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 110 |
102 109
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 111 |
|
ssdif0 |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) = ∅ ) |
| 112 |
110 111
|
sylib |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) = ∅ ) |
| 113 |
|
0ss |
⊢ ∅ ⊆ 𝑢 |
| 114 |
112 113
|
eqsstrdi |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ⊆ 𝑢 ) |
| 115 |
|
respreima |
⊢ ( Fun 𝐷 → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 116 |
102 44 45 115
|
4syl |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 117 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 118 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑣 ∈ 𝒫 𝑢 ) |
| 119 |
118
|
elpwid |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑣 ⊆ 𝑢 ) |
| 120 |
117 119
|
eqsstrrd |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ⊆ 𝑢 ) |
| 121 |
116 120
|
eqsstrrd |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑢 ) |
| 122 |
114 121
|
unssd |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
| 123 |
|
ssundif |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ 𝑢 ) ⊆ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) |
| 124 |
|
difcom |
⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ 𝑢 ) ⊆ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
| 125 |
|
difdif2 |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) = ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 126 |
125
|
sseq1i |
⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ↔ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
| 127 |
123 124 126
|
3bitri |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ↔ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
| 128 |
122 127
|
sylibr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
| 129 |
|
sseq1 |
⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) → ( 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 130 |
129
|
rspcev |
⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
| 131 |
107 128 130
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
| 132 |
|
elin |
⊢ ( 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ↔ ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ) |
| 133 |
6
|
elrnmpt |
⊢ ( 𝑣 ∈ V → ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
| 134 |
133
|
elv |
⊢ ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 135 |
134
|
anbi1i |
⊢ ( ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ↔ ( ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ) |
| 136 |
|
ancom |
⊢ ( ( ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ↔ ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
| 137 |
132 135 136
|
3bitri |
⊢ ( 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ↔ ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
| 138 |
137
|
exbii |
⊢ ( ∃ 𝑣 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
| 139 |
|
n0 |
⊢ ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ) |
| 140 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
| 141 |
138 139 140
|
3bitr4i |
⊢ ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ↔ ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 142 |
141
|
biimpi |
⊢ ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 143 |
142
|
ad2antll |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 144 |
131 143
|
r19.29vva |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
| 145 |
81
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑋 ≠ ∅ ) |
| 146 |
43
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
| 147 |
|
metuel |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ↔ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) ) ) |
| 148 |
145 146 147
|
syl2anc |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ↔ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) ) ) |
| 149 |
96 144 148
|
mpbir2and |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ) |
| 150 |
|
indir |
⊢ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ( ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 151 |
|
disjdifr |
⊢ ( ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ∅ |
| 152 |
151
|
uneq2i |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ( ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ∅ ) |
| 153 |
|
un0 |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ∅ ) = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) |
| 154 |
150 152 153
|
3eqtri |
⊢ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) |
| 155 |
|
dfss2 |
⊢ ( 𝑢 ⊆ ( 𝐴 × 𝐴 ) ↔ ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) = 𝑢 ) |
| 156 |
90 155
|
sylib |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) = 𝑢 ) |
| 157 |
154 156
|
eqtr2id |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 = ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 158 |
|
ineq1 |
⊢ ( 𝑣 = ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) → ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 159 |
158
|
rspceeqv |
⊢ ( ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑢 = ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 160 |
149 157 159
|
syl2anc |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 161 |
88 160
|
impbida |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ) |
| 162 |
|
eqid |
⊢ ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) = ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 163 |
162
|
elrnmpt |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 164 |
163
|
elv |
⊢ ( 𝑢 ∈ ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 165 |
|
pweq |
⊢ ( 𝑣 = 𝑢 → 𝒫 𝑣 = 𝒫 𝑢 ) |
| 166 |
165
|
ineq2d |
⊢ ( 𝑣 = 𝑢 → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) = ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ) |
| 167 |
166
|
neeq1d |
⊢ ( 𝑣 = 𝑢 → ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ ↔ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) |
| 168 |
167
|
elrab |
⊢ ( 𝑢 ∈ { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ↔ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) |
| 169 |
161 164 168
|
3bitr4g |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑢 ∈ ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ 𝑢 ∈ { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) ) |
| 170 |
169
|
eqrdv |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
| 171 |
18 170
|
eqtrd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
| 172 |
11 13 171
|
3eqtr4rd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) ) |