Step |
Hyp |
Ref |
Expression |
1 |
|
metucn.u |
⊢ 𝑈 = ( metUnif ‘ 𝐶 ) |
2 |
|
metucn.v |
⊢ 𝑉 = ( metUnif ‘ 𝐷 ) |
3 |
|
metucn.x |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
4 |
|
metucn.y |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
5 |
|
metucn.c |
⊢ ( 𝜑 → 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) |
6 |
|
metucn.d |
⊢ ( 𝜑 → 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) |
7 |
|
metuval |
⊢ ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) → ( metUnif ‘ 𝐶 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → ( metUnif ‘ 𝐶 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ) |
9 |
1 8
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ) |
10 |
|
metuval |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → ( metUnif ‘ 𝐷 ) = ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) |
12 |
2 11
|
eqtrid |
⊢ ( 𝜑 → 𝑉 = ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) |
13 |
9 12
|
oveq12d |
⊢ ( 𝜑 → ( 𝑈 Cnu 𝑉 ) = ( ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) Cnu ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ 𝐹 ∈ ( ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) Cnu ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) ) ) |
15 |
|
eqid |
⊢ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) |
16 |
|
eqid |
⊢ ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) = ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑎 = 𝑐 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑐 ) ) |
18 |
17
|
imaeq2d |
⊢ ( 𝑎 = 𝑐 → ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) |
19 |
18
|
cbvmptv |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑐 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) |
20 |
19
|
rneqi |
⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑐 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) |
21 |
20
|
metust |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ∈ ( UnifOn ‘ 𝑋 ) ) |
22 |
3 5 21
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ∈ ( UnifOn ‘ 𝑋 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑏 = 𝑑 → ( 0 [,) 𝑏 ) = ( 0 [,) 𝑑 ) ) |
24 |
23
|
imaeq2d |
⊢ ( 𝑏 = 𝑑 → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
25 |
24
|
cbvmptv |
⊢ ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) = ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
26 |
25
|
rneqi |
⊢ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) = ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
27 |
26
|
metust |
⊢ ( ( 𝑌 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) → ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∈ ( UnifOn ‘ 𝑌 ) ) |
28 |
4 6 27
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∈ ( UnifOn ‘ 𝑌 ) ) |
29 |
|
oveq2 |
⊢ ( 𝑎 = 𝑒 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑒 ) ) |
30 |
29
|
imaeq2d |
⊢ ( 𝑎 = 𝑒 → ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
31 |
30
|
cbvmptv |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑒 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
32 |
31
|
rneqi |
⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑒 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
33 |
32
|
metustfbas |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
34 |
3 5 33
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
35 |
|
oveq2 |
⊢ ( 𝑏 = 𝑓 → ( 0 [,) 𝑏 ) = ( 0 [,) 𝑓 ) ) |
36 |
35
|
imaeq2d |
⊢ ( 𝑏 = 𝑓 → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
37 |
36
|
cbvmptv |
⊢ ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) = ( 𝑓 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
38 |
37
|
rneqi |
⊢ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) = ran ( 𝑓 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
39 |
38
|
metustfbas |
⊢ ( ( 𝑌 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) → ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ) |
40 |
4 6 39
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ) |
41 |
15 16 22 28 34 40
|
isucn2 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) Cnu ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
42 |
14 41
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
43 |
|
eqid |
⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) |
44 |
|
oveq2 |
⊢ ( 𝑓 = 𝑑 → ( 0 [,) 𝑓 ) = ( 0 [,) 𝑑 ) ) |
45 |
44
|
imaeq2d |
⊢ ( 𝑓 = 𝑑 → ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
46 |
45
|
rspceeqv |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
47 |
43 46
|
mpan2 |
⊢ ( 𝑑 ∈ ℝ+ → ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ+ ) → ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
49 |
38
|
metustel |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) ) |
50 |
6 49
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ+ ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) ) |
52 |
48 51
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) |
53 |
26
|
metustel |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) → ( 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
54 |
6 53
|
syl |
⊢ ( 𝜑 → ( 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
56 |
55
|
breqd |
⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
57 |
56
|
imbi2d |
⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
58 |
57
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
59 |
58
|
rexralbidv |
⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ( ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
60 |
52 54 59
|
ralxfr2d |
⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
61 |
|
eqid |
⊢ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) |
62 |
|
oveq2 |
⊢ ( 𝑒 = 𝑐 → ( 0 [,) 𝑒 ) = ( 0 [,) 𝑐 ) ) |
63 |
62
|
imaeq2d |
⊢ ( 𝑒 = 𝑐 → ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) |
64 |
63
|
rspceeqv |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
65 |
61 64
|
mpan2 |
⊢ ( 𝑐 ∈ ℝ+ → ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ) → ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
67 |
32
|
metustel |
⊢ ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) → ( ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) ) |
68 |
5 67
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ) → ( ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) ) |
70 |
66 69
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ) → ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) |
71 |
20
|
metustel |
⊢ ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑐 ∈ ℝ+ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) ) |
72 |
5 71
|
syl |
⊢ ( 𝜑 → ( 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑐 ∈ ℝ+ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) ) |
73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) |
74 |
73
|
breqd |
⊢ ( ( 𝜑 ∧ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → ( 𝑥 𝑢 𝑦 ↔ 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 ) ) |
75 |
74
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
76 |
75
|
2ralbidv |
⊢ ( ( 𝜑 ∧ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
77 |
70 72 76
|
rexxfr2d |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
78 |
77
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
79 |
60 78
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
81 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) |
82 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑐 ∈ ℝ+ ) |
83 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
84 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
85 |
|
elbl4 |
⊢ ( ( ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑐 ) ↔ 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 ) ) |
86 |
|
rpxr |
⊢ ( 𝑐 ∈ ℝ+ → 𝑐 ∈ ℝ* ) |
87 |
|
elbl3ps |
⊢ ( ( ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑐 ∈ ℝ* ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑐 ) ↔ ( 𝑥 𝐶 𝑦 ) < 𝑐 ) ) |
88 |
86 87
|
sylanl2 |
⊢ ( ( ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑐 ) ↔ ( 𝑥 𝐶 𝑦 ) < 𝑐 ) ) |
89 |
85 88
|
bitr3d |
⊢ ( ( ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 ↔ ( 𝑥 𝐶 𝑦 ) < 𝑐 ) ) |
90 |
81 82 83 84 89
|
syl22anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 ↔ ( 𝑥 𝐶 𝑦 ) < 𝑐 ) ) |
91 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) |
92 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑑 ∈ ℝ+ ) |
93 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
94 |
93 83
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
95 |
93 84
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
96 |
|
elbl4 |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ 𝐷 ) 𝑑 ) ↔ ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
97 |
|
rpxr |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℝ* ) |
98 |
|
elbl3ps |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) ∧ 𝑑 ∈ ℝ* ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ 𝐷 ) 𝑑 ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) |
99 |
97 98
|
sylanl2 |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ 𝐷 ) 𝑑 ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) |
100 |
96 99
|
bitr3d |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) |
101 |
91 92 94 95 100
|
syl22anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) |
102 |
90 101
|
imbi12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
103 |
102
|
2ralbidva |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
104 |
103
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
105 |
104
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
106 |
80 105
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
107 |
106
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) ) |
108 |
42 107
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) ) |