Metamath Proof Explorer


Theorem metucn

Description: Uniform continuity in metric spaces. Compare the order of the quantifiers with metcn . (Contributed by Thierry Arnoux, 26-Jan-2018) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypotheses metucn.u U = metUnif C
metucn.v V = metUnif D
metucn.x φ X
metucn.y φ Y
metucn.c φ C PsMet X
metucn.d φ D PsMet Y
Assertion metucn φ F U uCn V F : X Y d + c + x X y X x C y < c F x D F y < d

Proof

Step Hyp Ref Expression
1 metucn.u U = metUnif C
2 metucn.v V = metUnif D
3 metucn.x φ X
4 metucn.y φ Y
5 metucn.c φ C PsMet X
6 metucn.d φ D PsMet Y
7 metuval C PsMet X metUnif C = X × X filGen ran a + C -1 0 a
8 5 7 syl φ metUnif C = X × X filGen ran a + C -1 0 a
9 1 8 eqtrid φ U = X × X filGen ran a + C -1 0 a
10 metuval D PsMet Y metUnif D = Y × Y filGen ran b + D -1 0 b
11 6 10 syl φ metUnif D = Y × Y filGen ran b + D -1 0 b
12 2 11 eqtrid φ V = Y × Y filGen ran b + D -1 0 b
13 9 12 oveq12d φ U uCn V = X × X filGen ran a + C -1 0 a uCn Y × Y filGen ran b + D -1 0 b
14 13 eleq2d φ F U uCn V F X × X filGen ran a + C -1 0 a uCn Y × Y filGen ran b + D -1 0 b
15 eqid X × X filGen ran a + C -1 0 a = X × X filGen ran a + C -1 0 a
16 eqid Y × Y filGen ran b + D -1 0 b = Y × Y filGen ran b + D -1 0 b
17 oveq2 a = c 0 a = 0 c
18 17 imaeq2d a = c C -1 0 a = C -1 0 c
19 18 cbvmptv a + C -1 0 a = c + C -1 0 c
20 19 rneqi ran a + C -1 0 a = ran c + C -1 0 c
21 20 metust X C PsMet X X × X filGen ran a + C -1 0 a UnifOn X
22 3 5 21 syl2anc φ X × X filGen ran a + C -1 0 a UnifOn X
23 oveq2 b = d 0 b = 0 d
24 23 imaeq2d b = d D -1 0 b = D -1 0 d
25 24 cbvmptv b + D -1 0 b = d + D -1 0 d
26 25 rneqi ran b + D -1 0 b = ran d + D -1 0 d
27 26 metust Y D PsMet Y Y × Y filGen ran b + D -1 0 b UnifOn Y
28 4 6 27 syl2anc φ Y × Y filGen ran b + D -1 0 b UnifOn Y
29 oveq2 a = e 0 a = 0 e
30 29 imaeq2d a = e C -1 0 a = C -1 0 e
31 30 cbvmptv a + C -1 0 a = e + C -1 0 e
32 31 rneqi ran a + C -1 0 a = ran e + C -1 0 e
33 32 metustfbas X C PsMet X ran a + C -1 0 a fBas X × X
34 3 5 33 syl2anc φ ran a + C -1 0 a fBas X × X
35 oveq2 b = f 0 b = 0 f
36 35 imaeq2d b = f D -1 0 b = D -1 0 f
37 36 cbvmptv b + D -1 0 b = f + D -1 0 f
38 37 rneqi ran b + D -1 0 b = ran f + D -1 0 f
39 38 metustfbas Y D PsMet Y ran b + D -1 0 b fBas Y × Y
40 4 6 39 syl2anc φ ran b + D -1 0 b fBas Y × Y
41 15 16 22 28 34 40 isucn2 φ F X × X filGen ran a + C -1 0 a uCn Y × Y filGen ran b + D -1 0 b F : X Y v ran b + D -1 0 b u ran a + C -1 0 a x X y X x u y F x v F y
42 14 41 bitrd φ F U uCn V F : X Y v ran b + D -1 0 b u ran a + C -1 0 a x X y X x u y F x v F y
43 eqid D -1 0 d = D -1 0 d
44 oveq2 f = d 0 f = 0 d
45 44 imaeq2d f = d D -1 0 f = D -1 0 d
46 45 rspceeqv d + D -1 0 d = D -1 0 d f + D -1 0 d = D -1 0 f
47 43 46 mpan2 d + f + D -1 0 d = D -1 0 f
48 47 adantl φ d + f + D -1 0 d = D -1 0 f
49 38 metustel D PsMet Y D -1 0 d ran b + D -1 0 b f + D -1 0 d = D -1 0 f
50 6 49 syl φ D -1 0 d ran b + D -1 0 b f + D -1 0 d = D -1 0 f
51 50 adantr φ d + D -1 0 d ran b + D -1 0 b f + D -1 0 d = D -1 0 f
52 48 51 mpbird φ d + D -1 0 d ran b + D -1 0 b
53 26 metustel D PsMet Y v ran b + D -1 0 b d + v = D -1 0 d
54 6 53 syl φ v ran b + D -1 0 b d + v = D -1 0 d
55 simpr φ v = D -1 0 d v = D -1 0 d
56 55 breqd φ v = D -1 0 d F x v F y F x D -1 0 d F y
57 56 imbi2d φ v = D -1 0 d x u y F x v F y x u y F x D -1 0 d F y
58 57 ralbidv φ v = D -1 0 d y X x u y F x v F y y X x u y F x D -1 0 d F y
59 58 rexralbidv φ v = D -1 0 d u ran a + C -1 0 a x X y X x u y F x v F y u ran a + C -1 0 a x X y X x u y F x D -1 0 d F y
60 52 54 59 ralxfr2d φ v ran b + D -1 0 b u ran a + C -1 0 a x X y X x u y F x v F y d + u ran a + C -1 0 a x X y X x u y F x D -1 0 d F y
61 eqid C -1 0 c = C -1 0 c
62 oveq2 e = c 0 e = 0 c
63 62 imaeq2d e = c C -1 0 e = C -1 0 c
64 63 rspceeqv c + C -1 0 c = C -1 0 c e + C -1 0 c = C -1 0 e
65 61 64 mpan2 c + e + C -1 0 c = C -1 0 e
66 65 adantl φ c + e + C -1 0 c = C -1 0 e
67 32 metustel C PsMet X C -1 0 c ran a + C -1 0 a e + C -1 0 c = C -1 0 e
68 5 67 syl φ C -1 0 c ran a + C -1 0 a e + C -1 0 c = C -1 0 e
69 68 adantr φ c + C -1 0 c ran a + C -1 0 a e + C -1 0 c = C -1 0 e
70 66 69 mpbird φ c + C -1 0 c ran a + C -1 0 a
71 20 metustel C PsMet X u ran a + C -1 0 a c + u = C -1 0 c
72 5 71 syl φ u ran a + C -1 0 a c + u = C -1 0 c
73 simpr φ u = C -1 0 c u = C -1 0 c
74 73 breqd φ u = C -1 0 c x u y x C -1 0 c y
75 74 imbi1d φ u = C -1 0 c x u y F x D -1 0 d F y x C -1 0 c y F x D -1 0 d F y
76 75 2ralbidv φ u = C -1 0 c x X y X x u y F x D -1 0 d F y x X y X x C -1 0 c y F x D -1 0 d F y
77 70 72 76 rexxfr2d φ u ran a + C -1 0 a x X y X x u y F x D -1 0 d F y c + x X y X x C -1 0 c y F x D -1 0 d F y
78 77 ralbidv φ d + u ran a + C -1 0 a x X y X x u y F x D -1 0 d F y d + c + x X y X x C -1 0 c y F x D -1 0 d F y
79 60 78 bitrd φ v ran b + D -1 0 b u ran a + C -1 0 a x X y X x u y F x v F y d + c + x X y X x C -1 0 c y F x D -1 0 d F y
80 79 adantr φ F : X Y v ran b + D -1 0 b u ran a + C -1 0 a x X y X x u y F x v F y d + c + x X y X x C -1 0 c y F x D -1 0 d F y
81 5 ad4antr φ F : X Y d + c + x X y X C PsMet X
82 simplr φ F : X Y d + c + x X y X c +
83 simprr φ F : X Y d + c + x X y X y X
84 simprl φ F : X Y d + c + x X y X x X
85 elbl4 C PsMet X c + y X x X x y ball C c x C -1 0 c y
86 rpxr c + c *
87 elbl3ps C PsMet X c * y X x X x y ball C c x C y < c
88 86 87 sylanl2 C PsMet X c + y X x X x y ball C c x C y < c
89 85 88 bitr3d C PsMet X c + y X x X x C -1 0 c y x C y < c
90 81 82 83 84 89 syl22anc φ F : X Y d + c + x X y X x C -1 0 c y x C y < c
91 6 ad4antr φ F : X Y d + c + x X y X D PsMet Y
92 simpllr φ F : X Y d + c + x X y X d +
93 simp-4r φ F : X Y d + c + x X y X F : X Y
94 93 83 ffvelrnd φ F : X Y d + c + x X y X F y Y
95 93 84 ffvelrnd φ F : X Y d + c + x X y X F x Y
96 elbl4 D PsMet Y d + F y Y F x Y F x F y ball D d F x D -1 0 d F y
97 rpxr d + d *
98 elbl3ps D PsMet Y d * F y Y F x Y F x F y ball D d F x D F y < d
99 97 98 sylanl2 D PsMet Y d + F y Y F x Y F x F y ball D d F x D F y < d
100 96 99 bitr3d D PsMet Y d + F y Y F x Y F x D -1 0 d F y F x D F y < d
101 91 92 94 95 100 syl22anc φ F : X Y d + c + x X y X F x D -1 0 d F y F x D F y < d
102 90 101 imbi12d φ F : X Y d + c + x X y X x C -1 0 c y F x D -1 0 d F y x C y < c F x D F y < d
103 102 2ralbidva φ F : X Y d + c + x X y X x C -1 0 c y F x D -1 0 d F y x X y X x C y < c F x D F y < d
104 103 rexbidva φ F : X Y d + c + x X y X x C -1 0 c y F x D -1 0 d F y c + x X y X x C y < c F x D F y < d
105 104 ralbidva φ F : X Y d + c + x X y X x C -1 0 c y F x D -1 0 d F y d + c + x X y X x C y < c F x D F y < d
106 80 105 bitrd φ F : X Y v ran b + D -1 0 b u ran a + C -1 0 a x X y X x u y F x v F y d + c + x X y X x C y < c F x D F y < d
107 106 pm5.32da φ F : X Y v ran b + D -1 0 b u ran a + C -1 0 a x X y X x u y F x v F y F : X Y d + c + x X y X x C y < c F x D F y < d
108 42 107 bitrd φ F U uCn V F : X Y d + c + x X y X x C y < c F x D F y < d