Metamath Proof Explorer


Theorem metucn

Description: Uniform continuity in metric spaces. Compare the order of the quantifiers with metcn . (Contributed by Thierry Arnoux, 26-Jan-2018) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypotheses metucn.u U=metUnifC
metucn.v V=metUnifD
metucn.x φX
metucn.y φY
metucn.c φCPsMetX
metucn.d φDPsMetY
Assertion metucn φFUuCnVF:XYd+c+xXyXxCy<cFxDFy<d

Proof

Step Hyp Ref Expression
1 metucn.u U=metUnifC
2 metucn.v V=metUnifD
3 metucn.x φX
4 metucn.y φY
5 metucn.c φCPsMetX
6 metucn.d φDPsMetY
7 metuval CPsMetXmetUnifC=X×XfilGenrana+C-10a
8 5 7 syl φmetUnifC=X×XfilGenrana+C-10a
9 1 8 eqtrid φU=X×XfilGenrana+C-10a
10 metuval DPsMetYmetUnifD=Y×YfilGenranb+D-10b
11 6 10 syl φmetUnifD=Y×YfilGenranb+D-10b
12 2 11 eqtrid φV=Y×YfilGenranb+D-10b
13 9 12 oveq12d φUuCnV=X×XfilGenrana+C-10auCnY×YfilGenranb+D-10b
14 13 eleq2d φFUuCnVFX×XfilGenrana+C-10auCnY×YfilGenranb+D-10b
15 eqid X×XfilGenrana+C-10a=X×XfilGenrana+C-10a
16 eqid Y×YfilGenranb+D-10b=Y×YfilGenranb+D-10b
17 oveq2 a=c0a=0c
18 17 imaeq2d a=cC-10a=C-10c
19 18 cbvmptv a+C-10a=c+C-10c
20 19 rneqi rana+C-10a=ranc+C-10c
21 20 metust XCPsMetXX×XfilGenrana+C-10aUnifOnX
22 3 5 21 syl2anc φX×XfilGenrana+C-10aUnifOnX
23 oveq2 b=d0b=0d
24 23 imaeq2d b=dD-10b=D-10d
25 24 cbvmptv b+D-10b=d+D-10d
26 25 rneqi ranb+D-10b=rand+D-10d
27 26 metust YDPsMetYY×YfilGenranb+D-10bUnifOnY
28 4 6 27 syl2anc φY×YfilGenranb+D-10bUnifOnY
29 oveq2 a=e0a=0e
30 29 imaeq2d a=eC-10a=C-10e
31 30 cbvmptv a+C-10a=e+C-10e
32 31 rneqi rana+C-10a=rane+C-10e
33 32 metustfbas XCPsMetXrana+C-10afBasX×X
34 3 5 33 syl2anc φrana+C-10afBasX×X
35 oveq2 b=f0b=0f
36 35 imaeq2d b=fD-10b=D-10f
37 36 cbvmptv b+D-10b=f+D-10f
38 37 rneqi ranb+D-10b=ranf+D-10f
39 38 metustfbas YDPsMetYranb+D-10bfBasY×Y
40 4 6 39 syl2anc φranb+D-10bfBasY×Y
41 15 16 22 28 34 40 isucn2 φFX×XfilGenrana+C-10auCnY×YfilGenranb+D-10bF:XYvranb+D-10burana+C-10axXyXxuyFxvFy
42 14 41 bitrd φFUuCnVF:XYvranb+D-10burana+C-10axXyXxuyFxvFy
43 eqid D-10d=D-10d
44 oveq2 f=d0f=0d
45 44 imaeq2d f=dD-10f=D-10d
46 45 rspceeqv d+D-10d=D-10df+D-10d=D-10f
47 43 46 mpan2 d+f+D-10d=D-10f
48 47 adantl φd+f+D-10d=D-10f
49 38 metustel DPsMetYD-10dranb+D-10bf+D-10d=D-10f
50 6 49 syl φD-10dranb+D-10bf+D-10d=D-10f
51 50 adantr φd+D-10dranb+D-10bf+D-10d=D-10f
52 48 51 mpbird φd+D-10dranb+D-10b
53 26 metustel DPsMetYvranb+D-10bd+v=D-10d
54 6 53 syl φvranb+D-10bd+v=D-10d
55 simpr φv=D-10dv=D-10d
56 55 breqd φv=D-10dFxvFyFxD-10dFy
57 56 imbi2d φv=D-10dxuyFxvFyxuyFxD-10dFy
58 57 ralbidv φv=D-10dyXxuyFxvFyyXxuyFxD-10dFy
59 58 rexralbidv φv=D-10durana+C-10axXyXxuyFxvFyurana+C-10axXyXxuyFxD-10dFy
60 52 54 59 ralxfr2d φvranb+D-10burana+C-10axXyXxuyFxvFyd+urana+C-10axXyXxuyFxD-10dFy
61 eqid C-10c=C-10c
62 oveq2 e=c0e=0c
63 62 imaeq2d e=cC-10e=C-10c
64 63 rspceeqv c+C-10c=C-10ce+C-10c=C-10e
65 61 64 mpan2 c+e+C-10c=C-10e
66 65 adantl φc+e+C-10c=C-10e
67 32 metustel CPsMetXC-10crana+C-10ae+C-10c=C-10e
68 5 67 syl φC-10crana+C-10ae+C-10c=C-10e
69 68 adantr φc+C-10crana+C-10ae+C-10c=C-10e
70 66 69 mpbird φc+C-10crana+C-10a
71 20 metustel CPsMetXurana+C-10ac+u=C-10c
72 5 71 syl φurana+C-10ac+u=C-10c
73 simpr φu=C-10cu=C-10c
74 73 breqd φu=C-10cxuyxC-10cy
75 74 imbi1d φu=C-10cxuyFxD-10dFyxC-10cyFxD-10dFy
76 75 2ralbidv φu=C-10cxXyXxuyFxD-10dFyxXyXxC-10cyFxD-10dFy
77 70 72 76 rexxfr2d φurana+C-10axXyXxuyFxD-10dFyc+xXyXxC-10cyFxD-10dFy
78 77 ralbidv φd+urana+C-10axXyXxuyFxD-10dFyd+c+xXyXxC-10cyFxD-10dFy
79 60 78 bitrd φvranb+D-10burana+C-10axXyXxuyFxvFyd+c+xXyXxC-10cyFxD-10dFy
80 79 adantr φF:XYvranb+D-10burana+C-10axXyXxuyFxvFyd+c+xXyXxC-10cyFxD-10dFy
81 5 ad4antr φF:XYd+c+xXyXCPsMetX
82 simplr φF:XYd+c+xXyXc+
83 simprr φF:XYd+c+xXyXyX
84 simprl φF:XYd+c+xXyXxX
85 elbl4 CPsMetXc+yXxXxyballCcxC-10cy
86 rpxr c+c*
87 elbl3ps CPsMetXc*yXxXxyballCcxCy<c
88 86 87 sylanl2 CPsMetXc+yXxXxyballCcxCy<c
89 85 88 bitr3d CPsMetXc+yXxXxC-10cyxCy<c
90 81 82 83 84 89 syl22anc φF:XYd+c+xXyXxC-10cyxCy<c
91 6 ad4antr φF:XYd+c+xXyXDPsMetY
92 simpllr φF:XYd+c+xXyXd+
93 simp-4r φF:XYd+c+xXyXF:XY
94 93 83 ffvelcdmd φF:XYd+c+xXyXFyY
95 93 84 ffvelcdmd φF:XYd+c+xXyXFxY
96 elbl4 DPsMetYd+FyYFxYFxFyballDdFxD-10dFy
97 rpxr d+d*
98 elbl3ps DPsMetYd*FyYFxYFxFyballDdFxDFy<d
99 97 98 sylanl2 DPsMetYd+FyYFxYFxFyballDdFxDFy<d
100 96 99 bitr3d DPsMetYd+FyYFxYFxD-10dFyFxDFy<d
101 91 92 94 95 100 syl22anc φF:XYd+c+xXyXFxD-10dFyFxDFy<d
102 90 101 imbi12d φF:XYd+c+xXyXxC-10cyFxD-10dFyxCy<cFxDFy<d
103 102 2ralbidva φF:XYd+c+xXyXxC-10cyFxD-10dFyxXyXxCy<cFxDFy<d
104 103 rexbidva φF:XYd+c+xXyXxC-10cyFxD-10dFyc+xXyXxCy<cFxDFy<d
105 104 ralbidva φF:XYd+c+xXyXxC-10cyFxD-10dFyd+c+xXyXxCy<cFxDFy<d
106 80 105 bitrd φF:XYvranb+D-10burana+C-10axXyXxuyFxvFyd+c+xXyXxCy<cFxDFy<d
107 106 pm5.32da φF:XYvranb+D-10burana+C-10axXyXxuyFxvFyF:XYd+c+xXyXxCy<cFxDFy<d
108 42 107 bitrd φFUuCnVF:XYd+c+xXyXxCy<cFxDFy<d