| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metust.1 |
|
| 2 |
1
|
metustfbas |
|
| 3 |
|
fgcl |
|
| 4 |
|
filsspw |
|
| 5 |
2 3 4
|
3syl |
|
| 6 |
|
filtop |
|
| 7 |
2 3 6
|
3syl |
|
| 8 |
2 3
|
syl |
|
| 9 |
8
|
ad3antrrr |
|
| 10 |
|
simpllr |
|
| 11 |
|
simplr |
|
| 12 |
11
|
elpwid |
|
| 13 |
|
simpr |
|
| 14 |
|
filss |
|
| 15 |
9 10 12 13 14
|
syl13anc |
|
| 16 |
15
|
ex |
|
| 17 |
16
|
ralrimiva |
|
| 18 |
8
|
ad2antrr |
|
| 19 |
|
simplr |
|
| 20 |
|
simpr |
|
| 21 |
|
filin |
|
| 22 |
18 19 20 21
|
syl3anc |
|
| 23 |
22
|
ralrimiva |
|
| 24 |
1
|
metustid |
|
| 25 |
24
|
ad5ant24 |
|
| 26 |
|
simpr |
|
| 27 |
25 26
|
sstrd |
|
| 28 |
|
elfg |
|
| 29 |
28
|
biimpa |
|
| 30 |
29
|
simprd |
|
| 31 |
2 30
|
sylan |
|
| 32 |
27 31
|
r19.29a |
|
| 33 |
8
|
ad3antrrr |
|
| 34 |
2
|
adantr |
|
| 35 |
|
ssfg |
|
| 36 |
34 35
|
syl |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
|
simplr |
|
| 39 |
37 38
|
sseldd |
|
| 40 |
29
|
simpld |
|
| 41 |
2 40
|
sylan |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
|
cnvss |
|
| 44 |
|
cnvxp |
|
| 45 |
43 44
|
sseqtrdi |
|
| 46 |
42 45
|
syl |
|
| 47 |
1
|
metustsym |
|
| 48 |
47
|
ad5ant24 |
|
| 49 |
|
cnvss |
|
| 50 |
49
|
adantl |
|
| 51 |
48 50
|
eqsstrrd |
|
| 52 |
|
filss |
|
| 53 |
33 39 46 51 52
|
syl13anc |
|
| 54 |
53 31
|
r19.29a |
|
| 55 |
1
|
metustexhalf |
|
| 56 |
55
|
ad4ant13 |
|
| 57 |
|
r19.41v |
|
| 58 |
|
sstr |
|
| 59 |
58
|
reximi |
|
| 60 |
57 59
|
sylbir |
|
| 61 |
56 60
|
sylancom |
|
| 62 |
61 31
|
r19.29a |
|
| 63 |
|
ssrexv |
|
| 64 |
36 62 63
|
sylc |
|
| 65 |
32 54 64
|
3jca |
|
| 66 |
17 23 65
|
3jca |
|
| 67 |
66
|
ralrimiva |
|
| 68 |
|
elfvex |
|
| 69 |
68
|
adantl |
|
| 70 |
|
isust |
|
| 71 |
69 70
|
syl |
|
| 72 |
5 7 67 71
|
mpbir3and |
|