Metamath Proof Explorer


Theorem fgcl

Description: A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fgcl FfBasXXfilGenFFilX

Proof

Step Hyp Ref Expression
1 elfg FfBasXzXfilGenFzXyFyz
2 elfvex FfBasXXV
3 fbasne0 FfBasXF
4 n0 FyyF
5 3 4 sylib FfBasXyyF
6 fbelss FfBasXyFyX
7 6 ex FfBasXyFyX
8 7 ancld FfBasXyFyFyX
9 8 eximdv FfBasXyyFyyFyX
10 5 9 mpd FfBasXyyFyX
11 df-rex yFyXyyFyX
12 10 11 sylibr FfBasXyFyX
13 elfvdm FfBasXXdomfBas
14 sseq2 z=XyzyX
15 14 rexbidv z=XyFyzyFyX
16 15 sbcieg XdomfBas[˙X/z]˙yFyzyFyX
17 13 16 syl FfBasX[˙X/z]˙yFyzyFyX
18 12 17 mpbird FfBasX[˙X/z]˙yFyz
19 0nelfb FfBasX¬F
20 0ex V
21 sseq2 z=yzy
22 21 rexbidv z=yFyzyFy
23 20 22 sbcie [˙/z]˙yFyzyFy
24 ss0 yy=
25 24 eleq1d yyFF
26 25 biimpac yFyF
27 26 rexlimiva yFyF
28 23 27 sylbi [˙/z]˙yFyzF
29 19 28 nsyl FfBasX¬[˙/z]˙yFyz
30 sstr yvvuyu
31 30 expcom vuyvyu
32 31 reximdv vuyFyvyFyu
33 32 3ad2ant3 FfBasXuXvuyFyvyFyu
34 vex vV
35 sseq2 z=vyzyv
36 35 rexbidv z=vyFyzyFyv
37 34 36 sbcie [˙v/z]˙yFyzyFyv
38 vex uV
39 sseq2 z=uyzyu
40 39 rexbidv z=uyFyzyFyu
41 38 40 sbcie [˙u/z]˙yFyzyFyu
42 33 37 41 3imtr4g FfBasXuXvu[˙v/z]˙yFyz[˙u/z]˙yFyz
43 fbasssin FfBasXzFwFyFyzw
44 43 3expib FfBasXzFwFyFyzw
45 sstr2 yzwzwuvyuv
46 45 com12 zwuvyzwyuv
47 46 reximdv zwuvyFyzwyFyuv
48 ss2in zuwvzwuv
49 47 48 syl11 yFyzwzuwvyFyuv
50 44 49 syl6 FfBasXzFwFzuwvyFyuv
51 50 exp5c FfBasXzFwFzuwvyFyuv
52 51 imp31 FfBasXzFwFzuwvyFyuv
53 52 impancom FfBasXzFzuwFwvyFyuv
54 53 rexlimdv FfBasXzFzuwFwvyFyuv
55 54 rexlimdva2 FfBasXzFzuwFwvyFyuv
56 55 impd FfBasXzFzuwFwvyFyuv
57 56 3ad2ant1 FfBasXuXvXzFzuwFwvyFyuv
58 sseq1 y=zyuzu
59 58 cbvrexvw yFyuzFzu
60 41 59 bitri [˙u/z]˙yFyzzFzu
61 sseq1 y=wyvwv
62 61 cbvrexvw yFyvwFwv
63 37 62 bitri [˙v/z]˙yFyzwFwv
64 60 63 anbi12i [˙u/z]˙yFyz[˙v/z]˙yFyzzFzuwFwv
65 38 inex1 uvV
66 sseq2 z=uvyzyuv
67 66 rexbidv z=uvyFyzyFyuv
68 65 67 sbcie [˙uv/z]˙yFyzyFyuv
69 57 64 68 3imtr4g FfBasXuXvX[˙u/z]˙yFyz[˙v/z]˙yFyz[˙uv/z]˙yFyz
70 1 2 18 29 42 69 isfild FfBasXXfilGenFFilX