Metamath Proof Explorer


Theorem fbelss

Description: An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbelss FfBasBXFXB

Proof

Step Hyp Ref Expression
1 fbsspw FfBasBF𝒫B
2 1 sselda FfBasBXFX𝒫B
3 2 elpwid FfBasBXFXB