Metamath Proof Explorer


Theorem fbdmn0

Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbdmn0 FfBasBB

Proof

Step Hyp Ref Expression
1 0nelfb FfBasB¬F
2 fveq2 B=fBasB=fBas
3 2 eleq2d B=FfBasBFfBas
4 3 biimpd B=FfBasBFfBas
5 fbasne0 FfBasF
6 n0 FxxF
7 5 6 sylib FfBasxxF
8 fbelss FfBasxFx
9 ss0 xx=
10 8 9 syl FfBasxFx=
11 simpr FfBasxFxF
12 10 11 eqeltrrd FfBasxFF
13 7 12 exlimddv FfBasF
14 4 13 syl6com FfBasBB=F
15 14 necon3bd FfBasB¬FB
16 1 15 mpd FfBasBB